Answer:
0.01917 m^3/kg.
Explanation:
Given:
P = 15 MPa
= 1.5 × 10^4 kPa
T = 350 °C
= 350 + 273
= 623 K
Molar mass of water, m = (2 × 1) + 16
= 18 g/mol
= 0.018 kg/mol
R = 0.4615 kPa·m3/kg·K
Using ideal gas equation,
P × V = n × R × T
But n = mass/molar mass
V = (R × T)/P
V/M = (R × T)/P × m
= (0.4615 × 623)/1.5 × 10^4
= 0.01917 m^3/kg.
Concave is not a type of mechanical wave because it doesn’t need a medium for propagation.
Answer:
ΔS> 0 means Letter A
Explanation:
Processes that involve an increase in entropy of the system (ΔS > 0) are very often spontaneous; however, examples to the contrary are plentiful. By expanding consideration of entropy changes to include the surroundings, we may reach a significant conclusion regarding the relation between this property and spontaneity. In thermodynamic models, the system and surroundings comprise everything, that is, the universe, and so the following is true:
\displaystyle \Delta {S}_{\text{univ}}=\Delta {S}_{\text{sys}}+\Delta {S}_{\text{surr}}
Answer:
Fe2(SO4)3 + 3BaCl2 → 2FeCl3 + 3BaSO4
Mexican Texas<span> is the historiographical name used to refer to the era of </span>Texan<span> history between 1821 and 1836, </span>when it was part<span> of </span>Mexico<span>. </span>Mexico gained independence<span> from Spain in 1821 in </span>its war<span> of</span>independence<span>. Initially, </span>Mexican Texas<span> operated very similarly to Spanish </span>Texas<span>.</span>