Just substitue
for
in the expression.



Answer:
c). Two tailed test
Step-by-step explanation:
The given hypothesis are
Null hypothesis: H0:μ= 1.7
Alternative hypothesis: H1:μ≠ 1.7
The alternative hypothesis demonstrates that mean number of children are not 1.7 in 2000. This means that mean number of children can be greater than 1.7 or mean number of children can be less than 1.7. Thus, the given alternative hypothesis indicates the two tailed test.
Answer:I believe it is D I’m taking the same test to
Step-by-step explanation:
Answer:
(e) csc x − cot x − ln(1 + cos x) + C
(c) 0
Step-by-step explanation:
(e) ∫ (1 + sin x) / (1 + cos x) dx
Split the integral.
∫ 1 / (1 + cos x) dx + ∫ sin x / (1 + cos x) dx
Multiply top and bottom of first integral by the conjugate, 1 − cos x.
∫ (1 − cos x) / (1 − cos²x) dx + ∫ sin x / (1 + cos x) dx
Pythagorean identity.
∫ (1 − cos x) / (sin²x) dx + ∫ sin x / (1 + cos x) dx
Divide.
∫ (csc²x − cot x csc x) dx + ∫ sin x / (1 + cos x) dx
Integrate.
csc x − cot x − ln(1 + cos x) + C
(c) ∫₋₇⁷ erf(x) dx
= ∫₋₇⁰ erf(x) dx + ∫₀⁷ erf(x) dx
The error function is odd (erf(-x) = -erf(x)), so:
= -∫₀⁷ erf(x) dx + ∫₀⁷ erf(x) dx
= 0
Answer:
1st option is the answer
Step-by-step explanation:
blue line: slope is 1 and y-intercept is 1; therefore equation is y= x + 1
red line: slope is -1 and y-intercept is -3; therefore equation is y= -x - 3