Sharing of two electrons make a <u>Covalent </u>bond.
<u>Explanation: </u>
Attractions among the atoms bring them together. So the electrons from each of the atoms are attracted towards the nucleus of those two atoms, that “share” the electrons produces a covalent bond.
It is also named as molecular bond, a bond that entails the sharing of a pair of electrons among the atoms. When the atoms share the electrons among themselves, it produces a molecule, which is more stable than the atom.
If the attractions between the atoms are strong enough and if every atom has enough space for the electrons in its outermost energy level then there occurs covalent bonding. So electrons are very important in the covalent bond formation.
Answer:
Isotopes are basically atoms of an element that have an unequal number of neutrons and protons. Of course the proton number remains the same, but the neutron number either decreases or increases, which leads to an overall change in mass. However, no chemical properties of the atom/element are changed as the electrons are the same number and do not react. In regards to Helium 4, the original number of neutrons in Helium is 2, and protons 2 as well. We see an equal number of neutrons and protons, hence an unchanged mass, and the element is <em>not</em> an isotope.
The molecule with higher dipole moment is COFH because the geometry of the molecule in the COF2 nearly cancel the dipolar moment of each other. To be more clear:
The dipolar moment is the vectorial sum of all bond moments in the molecule or dipolar moment of each bond. The dipolar moment of a molecule with three or more atoms is determined by bond polarity as their geometry.
COF2 has a trigonal planar structure which are symmetric. The electronegativity of oxygen is slightly different regarding fluor. So as you can see in the image, the electronic density is specially displaced to the fluor atoms, but either to the oxygen atom.
COFH has a trigonal structure but differs from COF2 because there is an hydrogen who is donating it's electronic density, so in this zone the electronic density is less than over oxygen or fluor. That makes bond angles be different between them.