Answer:
3.08 Nm
Explanation:
N = 200, diameter = 6 cm, radius = 3 cm, I = 7 A, B = 0.90 T, Angle = 30 degree
The angle made with the normal of the coil, theta = 90 - 30 = 60 degree
Torque = N I A B Sin Theta
Torque = 200 x 7 x 3.14 x 0.03 x 0.03 x 0.90 x Sin 60
Torque = 3.08 Nm
Under general relativity, there is no 'before the Big Bang'. The problem is that time is itself a part of the universe and is affected by matter and energy. Because of the huge densities just after the Big Bang, time itself is warped in such a way that it cannot go back before that event. It is somewhat like asking what is north of the north pole.
The conservation of matter and energy states that the total amount of mass and energy at one time is the same at any other time. Notice how time is a crucial part of this statement. To even talk about conservation laws, you have to have time.
The upshot is that the Big Bang did not break the conservation laws because time itself is part of the universe and started at the Big Bang and because the conservation laws need to have time in their statements.
<span>The inner core is liquid and moving.</span>
Answer:
The necessary information is if the forces acting on the block are in equilibrium
The coefficient of friction is 0.577
Explanation:
Where the forces acting on the object are in equilibrium, we have;
At constant velocity, the net force acting on the particle = 0
However, the frictional force is then given as
F = mg sinθ
Where:
m = Mass of the block
g = Acceleration due to gravity and
θ = Angle of inclination of the slope
F = 5×9.81×sin 30 = 24.525 N
Therefore, the coefficient of friction is given as
24.525 N = μ×m×g × cos θ = μ × 5 × 9.81 × cos 30 = μ × 42.479
μ × 42.479 N= 24.525 N
∴ μ = 24.525 N ÷ 42.479 N = 0.577
Answer:
An electric bell is placed inside a transparent glass jar. The bell can be turned on and off using a switch on the outside of the jar. A vacuum is created inside the jar by sucking out the air. Then the bell is rung using the switch. What will we see and hear?
A.
We’ll see the bell move, but we won’t hear it ring.
B.
We won’t see the bell move, but we’ll hear it ring.
C.
We’ll see the bell move and hear it ring.
D.
We won’t see the bell move or hear it ring.
E.
We’ll see the sound waves exit the vacuum pump.
Explanation:
so, the answer to the question is
A.
We'll see the bell move, but we won’t hear it ring.