If the velocity is constant then the acceleration of the object is zero.

Thus when we apply the equation

It remains

or equivalent
Answer:
I = 215.76 A
Explanation:
The direction of magnetic field produced by conductor 1 on the location of conductor 2 is towards left. Based on Right Hand Rule -1 and taking figure 21.3 as reference, the direction of force Fm due to magnetic field produced at C_2 is shown above. The force Fm balances the weight of conductor 2.
Fm = u_o*I^2*L/2*π*d
where I is the current in each rod, d = 0.0082 m is the distance 27rId
between each, L = 0.85 m is the length of each rod.
Fm = 4π*10^-7*I^2*1.1/2*π*0.0083
The mass of each rod is m = 0.0276 kg
F_m = mg
4π*10^-7*I^2*1.1/2*π*0.0083=0.0276*9.8
I = 215.76 A
note:
mathematical calculation maybe wrong or having little bit error but the method is perfectly fine
Answer:
A 2.0 kg ball, A, is moving with a velocity of 5.00 m/s due west. It collides with a stationary ball, B, also with a mass of 2.0 kg. After the collision
Explanation:
Explanation:
It is given that,
A particle starts from rest and has an acceleration function as :

(a) Since, 
v = velocity




(b) 
x = position



(c) Velocity function is given by :


t = 1 seconds
So, at t = 1 second the velocity of the particle is zero.