About 6.5x10^22 molecules.
(5g C2H5OH)x(1 mol C2H5OH/46g C2H5OH)x(6.02x10^23 molecules C2H5OH/1 mol C2H5OH)=(3.01E24)/46=6.5x10^22.
Let me know if this helped!
Answer:
Explanation:
From the given information:
The density of O₂ gas = 
here:
P = pressure of the O₂ gas = 310 bar
= 
= 305.97 atm
The temperature T = 415 K
The rate R = 0.0821 L.atm/mol.K
molar mass of O₂ gas = 32 g/mol
∴

= 287.37 g/L
To find the density using the Van der Waal equation
Recall that:
the Van der Waal constant for O₂ is:
a = 1.382 bar. L²/mol² &
b = 0.0319 L/mol
The initial step is to determine the volume = Vm
The Van der Waal equation can be represented as:

where;
R = gas constant (in bar) = 8.314 × 10⁻² L.bar/ K.mol
Replacing our values into the above equation, we have:



After solving;
V = 0.1152 L
∴

= 277.77 g/L
We say that the repulsive part of the interaction potential dominates because the results showcase that the density of the Van der Waals is lesser than the density of ideal gas.
Answer:
Acid base titration curves shows the pH at equivalence point
Explanation:
Since the images were not shown, I will proceed to give a general description of the following acid-base titration curves:
In a strong acid-strong base titration, the acid and base will react to form a neutral solution. At the equivalence point of the reaction, hydronium (H+) and hydroxide (OH-) ions will react to form water, leading to a pH of 7.
The titration curve reflects the strengths of the corresponding acid and base. If one reagent is a weak acid or base and the other is a strong acid or base, the titration curve is irregular, and the pH shifts less with small additions of titrant near the equivalence point.
Polyprotic acids are able to donate more than one proton per acid molecule, in contrast to monoprotic acids that only donate one proton per molecule. In the titration curve of a polyptotic acid and a strong base, The curve starts at a higher pH than a titration curve of a strong base. There is always a steep climb in pH before the first midpoint. Gradually, the pH increases until it passes the midpoint; Right before the equivalence point there is a very sharp increase in pH.
No because they are both made up of H2O molecules; they only have different physical properties, one is in liquid state while the other is in solid state