Conduction: In the conduction, the heat is transferred from the hotter body to the colder body until the temperature on both bodies are equal.
In thermal equilibrium, there is no heat transfer as the heat is transferred till the temperature on the bodies are not same.
In the given problem, an iron bar at 200°C is placed in thermal contact with an identical iron bar at 120°C in an isolated system. After 30 minutes, the thermal equilibrium is attained. Then, the temperature on both iron bars are equal.Both iron bars are at 160°C in an isolated system.
But in an open system, the temperatures of the iron bars after 30 minutes would be less than 160°C. There will be heat lost to the surrounding. The room temperature is 25°C. There will be exchange of the heat occur between the iron bars and the surrounding. But It would take more than 30 minutes for both iron bars to reach 160°C because heat would be transferred less efficiently.
8.4 grams. I think but I’m not 100% sure
M(Mn(ClO3)3)=(54.938)+(35.45x3)+(15.999x9)
M(Mn(ClO3)3)=305.279 g/mol
There are 6 atoms of oxygen on the reactant side of the following equation: 2Fe2O3 + 3C → 4Fe + 3CO2. Details about atoms can be found below.
<h3>How to find number of atoms?</h3>
The number of atoms of an element in a balanced equation is the amount of that element involved in the reaction.
According to this question, Iron oxide reacts with carbon to produce iron and carbon dioxide as follows:
2Fe2O3 + 3C → 4Fe + 3CO2
In this reaction, 2 × 3 atoms = 6 atoms of oxygen are present on the reactant side of the equation.
Learn more about number of atoms at: brainly.com/question/8834373
#SPJ1
Answer:

Explanation:
The density formula is mass over volume.

Rearrange the formula for the mass, m. Multiply both sides of the formula by v.


Mass can be found by multiplying the density and volume. The density is 0.65 grams per milliliter and the volume is 45.0 cubic centimeters.
- A cubic centimeter is equal to a milliliter.
- Therefore, 45 cubic centimeters also equals 45 milliliters.

Substitute the values into the formula.

Multiply. Note the milliliters, or mL will cancel out.


The mass of the wood is 29.25 grams.