Answer:
d = 52 μm
Explanation:
given,
wavelength of the light source (λ)= 550 nm
distance to form interference pattern(D) = 1.5 m
y = 1.6 cm = 0.016 m
width of the slits = ?
now, using displacement formula
for the first maxima, m = 1
d = 5.2 x 10⁻⁶ m
d = 52 μm
hence, the width of her slits is equal to d = 52 μm
1. Velocity
2. Time
3. Idk
4. Idk
5. D. I think it may be A. but I think D.
Answer:

Explanation:
From the question we are told that
Radius of vertical r= 8m
Force exerted by passengers is 1/4 of weight
Generally the net force acting on top of the roller coaster is give to be

where


Generally the net force is given to be 




Mathematical we can now derive V




Therefore the speed of the roller coaster is given ton be 
Answer:

Explanation:
We have,
The surface temperature of the star is 60,000 K
It is required to find the wavelength of a star that radiated greatest amount of energy. Wein's displacement law gives the relation between wavelength and temperature such that :

Here,
= wavelength

So, the wavelength of the star is
.