<span>In order to determine the wavelength, we use the wave equation:
speed = frequency * wavelength
speed of light c = 3 x 10</span>⁸<span> m/s
Frequency f = 104.1 MHz = 1.041 x 10</span>⁸ Hz<span>
c = f</span>λ
λ = c / f
λ = 3 x 10⁸ / 1.041 x 10⁸
λ = 2.88 meters
The wavelength of the waves is 2.88 meters.
Sound is a longitudinal wave.
Answer:
Right
Explanation:
electromagnetic waves can travel through space (a vacuum) because it doesn't need a medium and its particles to propagate whereas a mechanical wave needs a medium to propagate. For example sound is a mechanical wave, sound vibrates off a mediums particles to propagate and for sound to be heard and travel
Answer:
Explanation:
Let the amplitude of individual wave be I and resultant amplitude be 1.703 I . Let the phase difference be Ф in terms of degree
From the formula of resultant vector
(1.703I)² = I² + I² + 2 I² cosФ
2.9 I² = 2I² + 2 I² cosФ
.9I² = 2 I² cosФ
cosФ = .9 / 2
= .45
Ф = 63.25 .
Answer:
the average force exerted by seatbelts on the passenger is 5625 N.
Explanation:
Given;
initial velocity of the car, u = 50 m/s
distance traveled by the car, s = 20 m
final velocity of the after coming to rest, v = 0
mass of the passenger, m = 90 kg
Determine the acceleration of the car as it hit the pile of dirt;
v² = u² + 2as
0 = 50² + (2 x 20)a
0 = 2500 + 40a
40a = -2500
a = -2500/40
a = -62.5 m/s²
The deceleration of the car is 62.5 m/s²
The force exerted on the passenger by the backward action of the car is calculated as follows;
F = ma
F = 90 x 62.5
F = 5625 N
Therefore, the average force exerted by seatbelts on the passenger is 5625 N.