The molar Concentration of KMnO₄ is 0.000219 M
Concentration is the abundance of a constituent divided by means of the overall extent of an aggregate. numerous styles of mathematical description may be outstanding: mass awareness, molar awareness, variety concentration, and quantity awareness.
y is absorbance
x is the molar concentration of KMnO_4
y = 4.84E + 03x - 2.26E - 01
0.833 = 4.84 * 10⁺⁰³ x - 2.26 * 10⁻¹
1.059 = 4.84 * 10⁺⁰³ x
X = 0.000219 M
Hence, The molar Concentration of KMnO₄ is 0.000219 M
Learn more about concentration here:-brainly.com/question/14469428
#SPJ9
Answer : Option 4) Region of the most probable electron location.
Explanation : As per the electron cloud model of the atom, an orbital is a region where the probability of finding an electron is highest. According to this model which was used to identify the probable location of the electrons when they go around the nucleus of an atom.
This electron cloud model was different from the older Bohr atomic model by Niels Bohr.
Answer:
Yes it is B,D.
Explanation:
Each box represents an element and contains its atomic number, symbol, average atomic mass, and (sometimes) name. The elements are arranged in seven horizontal rows, called periods or series, and 18 vertical columns, called groups.
Answer:
The lock-and-key model:
c. Enzyme active site has a rigid structure complementary
The induced-fit model:
a. Enzyme conformation changes when it binds the substrate so the active site fits the substrate.
Common to both The lock-and-key model and The induced-fit model:
b. Substrate binds to the enzyme at the active site, forming an enzyme-substrate complex.
d. Substrate binds to the enzyme through non-covalent interactions
Explanation:
Generally, the catalytic power of enzymes are due to transient covalent bonds formed between an enzyme's catalytic functional group and a substrate as well as non-covalent interactions between substrate and enzyme which lowers the activation energy of the reaction. This applies to both the lock-and-key model as well as induced-fit mode of enzyme catalysis.
The lock and key model of enzyme catalysis and specificity proposes that enzymes are structurally complementary to their substrates such that they fit like a lock and key. This complementary nature of the enzyme and its substrates ensures that only a substrate that is complementary to the enzyme's active site can bind to it for catalysis to proceed. this is known as the specificity of an enzyme to a particular substrate.
The induced-fit mode proposes that binding of substrate to the active site of an enzyme induces conformational changes in the enzyme which better positions various functional groups on the enzyme into the proper position to catalyse the reaction.
Answer:
5.6 seconds
Explanation:
The reaction follows a zero-order in dinitrogen monoxide
Rate = k[N20]^0 = change in concentration/time
[N20]^0 = 1
Time = change in concentration of N2O/k
Initial number of moles of N2O = 300 mmol = 300/1000 = 0.3 mol
Initial concentration = moles/volume = 0.3/4 = 0.075
Number of moles after t seconds = 150 mmol = 150/1000 = 0.15 mol
Concentration after t seconds = 0.15/4 = 0.0375 M
Change in concentration of N2O = 0.075 - 0.0375 = 0.0375 M
k = 0.0067 M/s
Time = 0.0375/0.0067 = 5.6 s