Answer:
-66.88KJ/mol
Explanation:
It is possible to obtain the heat involved in a reaction using a calorimeter. Formula is:
q = -C×m×ΔT
<em>Where q is heat of reaction, C is specific heat capacity (4.18J/°Cg), m is mass of solution (100.0g) and ΔT is temperature change (23.40°C-22.60°C = 0.80°C)</em>
Replacing:
q = -4.18J/°Cg×100.0g×0.80°C
q = -334.4J
Now, in the reaction:
Ag⁺ + Cl⁻→ AgCl
<em>AgNO₃ as source of Ag⁺ and HCl as source of Cl⁻</em>
Moles that react are:
0.050L× (0.100mol /L) = 0.0050moles
If 0.0050 moles produce -334.4J. Heat of reaction is:
-334.4J / 0.0050moles = -66880J/mol = <em>-66.88KJ/mol</em>
On the second shell there are two individual subshells:
The "s" subshell has only 1 orbital with max. two electrons spinning around; and the so-called "p" subshell has 3 orbitals with max. 6 electrons (2 on each!)
In total, there are four orbitals with 8 revolving electrons on the second shell.
Hope could help :)
The bottom of group 1. Francium (or Fr) is the element with the greatest metallic properties.
Francium is not a naturally-occurring element, however. It is man-made. There is an isotope of francium that exists naturally, but it's half life is so short that it decays almost instantly into a different element.
The naturally-occurring element with the highest metallic properties is cesium (or Cs), located right above francium.
Metallic characteristics decrease as you move from left to right on the periodic table.
Answer:
290 grams
Explanation:
Let's begin by writing the balanced chemical equations:

Then we calculate the number of moles in 97g of propane.
n(propane)=
According to the balanced chemical equation, one mole of propane produces 3 moles of carbon dioxide. So the available number of moles of propane must be multiplied by three to work out the number of carbon dioxide produced.
n(carbon dioxide)= 2.1995mol*3 = 6.5985mol
mass(carbon dioxide) = moles * molar mass
= 6.5985 mol * 44.01 g/mol
= 290 grams
Answer is: The solution has now become a good conductor of electricity.
Hydrochloric acid (HCl) dissociate on positive ions or cations of hydogen (H⁺) and negative ions or anions of chlorine (Cl⁻) accordinf to balanced chemical reaction:
HCl(aq) → H⁺(aq) + Cl⁻(aq).
When there are free cations and ions, water solution can conduct electricity.