Answer:
Abiotic factors such as latitude and temperature can impact biotic aspects of food web structure like the number of species, the number of links, as well as the proportion of basal or top species. These biotics factors can in turn influence network-structural aspects like connectance, omnivory levels or trophic level. In this way, plants make, or produce, the beginnings of most of the food energy on Earth. This is why plants are called producers. They use some of the food energy to carry out their own functions, and store the rest of the energy in their leaves, stems, roots and other parts.
Explanation:
Answer:
Around 100,000 years ago, the Earth was going through a period of Ice Age. While the Glacial Period was not in full effect, it is reasonably concluded by researching the ending of the Ice Age and other Glacial Periods that the Earth was considerably colder than it is right now.
<h3>
<u>PLEASE</u><u> MARK</u><u> ME</u><u> BRAINLIEST</u><u>.</u></h3>
Answer:
2% of the progeny will be double crossovers for the trihybrid test cross
Explanation:
By knowing the positions of genes, we can estimate the distances in MU between them per region.
- Genes A and B are 10 map units apart (Region I)
- Genes B and C are 20 map units apart (Region II)
- Genes A and C are 30 map units apart
----A-------10MU--------B-------------20MU-------------C---
Region I Region II
We can estimate the recombination frequencies by dividing each distance by 100.
• recombination frequency of A-B region = 10MU / 100 = 0.10
• recombination frequency of B-C region = 20MU / 100 = 0.20
Now that we know the recombination frequencies in each region, we can calculate the expected double recombinant frequency, EDRF, like this:
EDRF = recombination frequency in region I x recombination frequency in region II.
EDRF = 0.10 x 0.20 = 0.02
2% of the progeny will be double crossovers for the trihybrid test cross
Answer:
Archimedes principle
Explanation:
Any object, totally or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object.