Answer:
A: They produce a real image.
Explanation:
The images formed on the retina of the eye for a normal visibility must always be real.
Only a real image can be physically projected on any physical object whereas the virtual images are visible due to reflections.
- The nearsightedness is corrected with the help of a concave lens since it is the condition of the eye lens remaining thick and curved to converge the rays entering the eyes after a shorter distance which results in their image formation even before the retinal surface so to initially diverge them a bit so that they converge on the retinal surface and form the image there we use concave lens. Vice-versa of the above justification in the case of farsightedness.
Infrared light because it is barely able to be seen
<span>I believe this question has additional detail which stated
that during the 1st half, his speed was 2.01 m/s. From this we can
calculate his speed during the second half, v2, using the formula:</span>
v_ave = (v1 + v2) / 2
2.05 m/s = (2.01 m/s + v2) / 2
<span>v2 = 2.09 m/s</span>
Answer:
1.) Time t = 3.1 seconds
2.) Height h = 46 metres
Explanation:
given that the initial velocity U = 30 m/s
At the top of the trajectory, the final velocity V = 0
Using first equation of motion
V = U - gt
g is negative 9.81m/^2 as the object is going against the gravity.
Substitute all the parameters into the formula
0 = 30 - 9.81t
9.81t = 30
Make t the subject of formula
t = 30/9.81
t = 3.058 seconds
t = 3.1 seconds approximately
Therefore, it will take 3.1 seconds to reach to reach the top of its trajectory.
2.) The height it will go can be calculated by using second equation of motion
h = ut - 1/2gt^2
Substitutes U, g and t into the formula
h = 30(3.1) - 1/2 × 9.8 × 3.1^2
h = 93 - 47.089
h = 45.911 m
It will go 46 metres approximately high.