1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luda [366]
4 years ago
14

Solve the system by elimination (show all work)

Mathematics
1 answer:
Snezhnost [94]4 years ago
8 0

Answer:

[1, 1, 0]

Step-by-step explanation:

{−2x + 2y + 3z = 0

{−2x - y + z = −3 ←

{2x + 3y + 3z = 5 ←

2y + 4z = 2 ↷

{−2x + 2y + 3z = 0 ←

{−2x - y + z = −3

{2x + 3y + 3z = 5 ←

5y + 6z = 5 ↷

{5y + 6z = 5

{2y + 4z = 2

−⅖[5y + 6z = 5]

{−2y - 2⅖z = −2 >> New Temporary Equation

{2y + 4z = 2

____________

1⅗z = 0

___ _

1⅗ 1⅗

z = 0 [Plug this back into both equations above to get the y-term of 1, then plugging both z-term and y-term into all three equations at the very top, will give you the x-term of 1]; 1 = y; 1 = x

I am joyous to assist you anytime.

You might be interested in
PLSS HELP IMMEDIATELY!!!! ILL MARK BRAINIEST IF U DONT LEAVE A LINK OR GUESS!!!!
Georgia [21]

Answer:19

Step-by-step explanation:

7x3=21

21-2=19

5 0
3 years ago
Read 2 more answers
What is a2+b2=c2 what formula is this <br><br><br> Amos trevor_frost
Keith_Richards [23]

Answer:

\huge{\boxed{\boxed{\tt { ⎆ \ Pythagorean \ Theorem :-}}}} \

a {}^{2}  + b {}^{2}  = c {}^{2}

This is the formula for the <u>pythagorean </u><u>theorem </u>i.e, one leg of a triangle squared plus another leg of a triangle squared equals the hypotenuse squared.

6 0
3 years ago
Read 2 more answers
In a class room 3/10 of the students are wearing blue shirts and 3/5 are wearing white shirts there are 20 students In The class
shtirl [24]

Total number of students in the class = 36

Number of students wearing blue shirts = (1/6) * 36

                                                                = 36/6

                                                                = 6

Number of students wearing white shirts = (2/3) * 36

                                                                 = 2 * 12

                                                                 = 24

Then

Number of students not wearing blue or white shirts in the class = 36 - (6 + 24)

                                                                                                       = 36 - 30

                                                                                                       = 6

So 6 students in the class are wearing a shirt other than a blue or a white shirt. I hope the procedure is clear enough for you to understand.

5 0
3 years ago
A recent study done by the National Retail Federation found that 2019 back-to-school spending for all US households who have sch
MissTica

Answer:

Step-by-step explanation:

Hello!

The working variable is:

X: Back-to-school expense of a US household with school-aged children.

X~N(μ;σ²)

μ= $697

σ= $120

a. What is the probability that 2019 back-to-school spending for a US household with school-aged children is greater than $893?

Symbolically: P(X>$893)

First, you standardize the probability using Z= (X-μ)/σ ~N(0;1)

P(X>$893)= P(Z>(893-697)/120)= P(Z>1.63)

To resolve this question you have to use the table of cumulative probabilities for the standard normal distribution. These tables accumulate probabilities from the left, symbolically P(Z≤Z₀), so to reach probabilities greater than a Z₀ value you have to subtract the cumulative probability until that value from the maximum probability value 1:

P(Z>1.63)= 1 - P(Z≤1.63)= 1 - 0.94845= 0.05155

b. Provide the Z-score corresponding to the 2019 back-to-school spending of $1,200, and the probability of 2019 back-to-school spending for a household with school-aged children is less than $1,200.

P(X<$1200) = P(Z<(1200-697)/120)= P(Z<4.19)= 1

According to the empirical rule of the normal distribution, 99% of the data is between μ ± 3σ. This, logically, applies to the standard normal distribution. Considering that the distribution's mean is zero and the standard deviation is one, then 99% of the probabilities under the standard normal distribution are within the Z values: -3 and 3, values below -3 will have a probability equal to zero and values above 3 will have probability equal to one.

c. Find Q3 (Third Quartile).

Q3 in the value that marks three-quarters of the distribution, in other words, it has 75% of the distribution below it and 25% above, symbolically:

P(Z≤c)=0.75

In this case, you have to look in the center of the right Z-table (positive) for the probability of 0.75 and then the margins to find the Z-score that belongs to that cumulative probability:

c= 0.674

Now you reverse the standardization to see what value of X belongs to the Q3:

c= (X-μ)/σ

X= (c*σ)+μ

X= (0.674*120)+697= $777.88

d. Find Q1 (First Quartile)

To resolve this you have to follow the same steps as in c., just that this time you'll look for the value that marks the first quarter of the distribution, symbolically:

P(Z≤d)= 0.25

In this case, since the probability is below 0.5 you have to look for the Z value in the left table (negative).

d= -0.674

d= (X-μ)/σ

X= (d*σ)+μ

X= (-0.674*120)+697= $616.12

e. What is the value of the IQR for the distribution of 2019 back-to-school spending for a US household with school-aged children?

IQR= Q3-Q1= $777.88 - $616.12= $161.76

f. Interpret the value of the IQR from question 2e within the context of the problem.

$161.76 represents the distance between 75% of the Back-to-school expense of a US household 25% of the Back-to-school expense of US households.

g. What is the proportion of 2019 back-to-school spending within 1.50 standard deviations of the mean?

"Within 1.50 standard deviations of the mean" can be symbolized as "μ ± 1.5σ" or "μ - 1.5σ≤ Z ≤μ + 1.5σ"

P(μ - 1.5σ≤ Z ≤μ + 1.5σ)

Since the mean is zero and the standard deviation is one:

P(-1.5 ≤ Z ≤ 1.5)= P(Z≤1.5) - P(Z≤-1.5)= 0.933 - 0.067= 0.866

h. What is the 2019 back-to-school spending amount such that only 3% of households with school-age children spend more than this amount?

The "top" 3% means that you are looking for a value of the variable that has above it 0.03 of probability and below it 0.97%, first you look for this value under the standard normal distribution and then you reverse the standardization to reach the corresponding value of the variable:

P(Z>h)= 0.03 ⇒ P(Z≤h)=0.97

h= 1.881

h= (X-μ)/σ

X= (h*σ)+μ

X= ( 1.881*120)+697= $922.72

i. Which US household is more unusual, a US household with back-to-school spending of $600 or a US household with back-to-school spending of $900?

Under this kind of distribution, the "most usual" values are around the center (near the mean) and the "unusual" values will find themselves in the tails of the Gaussian bell.

To check which one is more unusual you have to see their distance with respect to the mean.

(X-μ)/σ

(600-697)/120= -0.8083

(900-697)/120= 1.69

An expense of $900 is more unusual than an expense of $600 (600 is almost the expected expenses)

j. Let's say the Smith family spent $815 on buying school supplies this fall. Provide an interpretation of the Smith family's 2019 back-to-school spending, i.e. what can you say about the percentage of all other US households with school-age children that have higher back-to-school spending than the Smith family?

P(X>$815) = P(Z>(815-697)/120)= P(Z>0.98)

1-P(Z≤0.983)= 0.837

83.7% of the families will have back-to-school expenses of $815 or more.

I hope it helps!

6 0
3 years ago
Which statement best describes the value of the expression 42 - (20 +<br> 3)? *
ludmilkaskok [199]

Answer:

The bottom one: The value is the difference of 42 and the sum of 20 and 3.

Step-by-step explanation:

The answer is what you get when you subtract 23 from 42. Using "the difference" means subtraction is involved and you expression is 42 - (minus) (20+3).

5 0
3 years ago
Read 2 more answers
Other questions:
  • I need help with this problem
    15·1 answer
  • Please help with geometry question
    10·1 answer
  • The parking lot had 1.5 times more trucks than cars. After 45 more cars came to the parking lot and 12 trucks left, there were 1
    8·1 answer
  • A) Car A travels x km for every litre of petrol while car B travels
    9·1 answer
  • Circle is divided into 20 equal parts. What is the angle measure of three of those parts?
    13·1 answer
  • Which of the following is a graph of y = x2?
    8·2 answers
  • (1/x-4)(1/x-4)(1/x-4)
    10·2 answers
  • WILL GIVE BRAINLIEST; I NEED ANSWERS ASAP
    7·1 answer
  • PLEASE HELP ASAP. WILL MARD BRAINLYEST
    12·1 answer
  • Shenhed finished his math assament in 3/8
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!