Answer:
35.16 degrees
Explanation:
Knowing that the index of refraction of the guide is 1.33, calculate the resulting angle of refraction for a ray of light that falls on a pool with an angle of incidence of 50º
Refractive index, n = 1.33
The angle of incidence, i = 50°
We need to find the angle of refraction. let it is r. It can be calculated using Snells law as follows:

So, the angle of refraction is 35.16 degrees.
At 8:00 pm, the velocity of the storm is 55 mi northeast. Assuming that the direction is exactly northeast, the angle is 45°
At 11:00 pm, the velocity is 75 mi north. The angle is 90°
In vector form
55 ∠ 45°
and
75 ∠ 90°
The magnitude and direction of the average velocity is
(55 ∠ 45° + 75 ∠ 90° ) / 3
Answer:
a. A = 0.735 m
b. T = 0.73 s
c. ΔE = 120 J decrease
d. The missing energy has turned into interned energy in the completely inelastic collision
Explanation:
a.
4 kg * 10 m /s + 6 kg * 0 m/s = 10 kg* vmax
vmax = 4.0 m/s
¹/₂ * m * v²max = ¹/₂ * k * A²
m * v² = k * A² ⇒ 10 kg * 4 m/s = 100 N/m * A²
A = √1.6 m ² = 1.26 m
At = 2.0 m - 1.26 m = 0.735 m
b.
T = 2π * √m / k ⇒ T = 2π * √4.0 kg / 100 N/m = 1.26 s
T = 2π *√ 10 / 100 *s² = 1.99 s
T = 1.99 s -1.26 s = 0.73 s
c.
E = ¹/₂ * m * v²max =
E₁ = ¹/₂ * 4.0 kg * 10² m/s = 200 J
E₂ = ¹/₂ * 10 * 4² = 80 J
200 J - 80 J = 120 J decrease
d.
The missing energy has turned into interned energy in the completely inelastic collision
Answer:
Solar radiation may be converted directly into electricity by solar cells (photovoltaic cells). In such cells, a small electric voltage is generated when light strikes the junction between a metal and a semiconductor (such as silicon) or the junction between two different semiconductors.
Explanation:
Pls mark me as brainliest