Answer:
The hunter should aim directly at the perched monkey because the tranquilizer dart will fall away from the line sight at the same rate that the monkey falls from its perch.
Tan theta = 9 / 90 = .1 so theta = 5.71 deg
The time for the monkey to reach the ground is
t = (2 h / g)^1/2 = (18 / 9.8)^1/2 = 1.36 sec
So the horizontal speed of the dart must be at least
Vx = 90 m / 1.36 sec = 66.4 m/s
Vx = V cos theta
V = 66.4 m/s / cos 5.71 = 66.7 m/s
It will decay into Silicon-30. Because alpha particles are 2 protons and 2 neutrons with an atomic mass of 4, you minus sulfur's atomic number by 2 and get silicon. And the atomic mass is 34 - 4 which equals 30.
The answer is cardiovascular.
To solve this problem it is necessary to apply the concepts related to the frequency in a spring, the conservation of energy and the total mechanical energy in the body (kinetic or potential as the case may be)
PART A) By definition the frequency in a spring is given by the equation

Where,
m = mass
k = spring constant
Our values are,
k=1700N/m
m=5.3 kg
Replacing,


PART B) To solve this section it is necessary to apply the concepts related to the conservation of energy both potential (simple harmonic) and kinetic in the spring.

Where,
k = Spring constant
m = mass
y = Vertical compression
v = Velocity
This expression is equivalent to,

Our values are given as,
k=1700 N/m
V=1.70 m/s
y=0.045m
m=5.3 kg
Replacing we have,

Solving for A,



PART C) Finally, the total mechanical energy is given by the equation


