Answer:
Explanation:
Given
radius of circle=1.4 m
Height of stone above ground=1.5 m
Horizontal distance(R)=10 m
It is given at the time of break stone flies horizontally thus stone to cover a height of 1.5 m in time t before reaching ground

t=0.55 s
Initial horizontal velocity at the time of break is given by u


u=18.07 m/s
Therefore magnitude of centripetal acceleration is given by

Answer:
x = 0.775m
Explanation:
Conceptual analysis
In the attached figure we see the locations of the charges. We place the charge q₃ at a distance x from the origin. The forces F₂₃ and F₁₃ are attractive forces because the charges have an opposite sign, and these forces must be equal so that the net force on the charge q₃ is zero.
We apply Coulomb's law to calculate the electrical forces on q₃:
(Electric force of q₂ over q₃)
(Electric force of q₁ over q₃)
Known data
q₁ = 15 μC = 15*10⁻⁶ C
q₂ = 6 μC = 6*10⁻⁶ C
Problem development
F₂₃ = F₁₃
(We cancel k and q₃)

q₂(2-x)² = q₁x²
6×10⁻⁶(2-x)² = 15×10⁻⁶(x)² (We cancel 10⁻⁶)
6(2-x)² = 15(x)²
6(4-4x+x²) = 15x²
24 - 24x + 6x² = 15x²
9x² + 24x - 24 = 0
The solution of the quadratic equation is:
x₁ = 0.775m
x₂ = -3.44m
x₁ meets the conditions for the forces to cancel in q₃
x₂ does not meet the conditions because the forces would remain in the same direction and would not cancel
The negative charge q₃ must be placed on x = 0.775 so that the net force is equal to zero.
Answer:
v = 2.928 10³ m / s
Explanation:
For this exercise we use Newton's second law where the force is the gravitational pull force
F = ma
a = F / m
Acceleration is
a = dv / dt
a = dv / dr dr / dt
a = dv / dr v
v dv = a dr
We substitute
v dv = a dr
∫ v dv = 1 / m G m M ∫ 1 / r² dr
We integrate
½ v² = G M (-1 / r)
We evaluate from the lower limit v = 0 for r = R m to the upper limit v = v for r = R + 2.73 10³, where R is the radius of Saturn's moon
v² = 2G M (- 1 / R +2.73 10³+ 1 / R)
We calculate
v² = 2 6,674 10⁻¹¹ 1.10 10²¹ (10⁻³ / 5.61 - 10⁻³ /(5.61 + 2.73))
v² = 14.6828 10⁷ (0.1783 -0.1199)
v = √8.5748 10⁶
v = 2.928 10³ m / s