A uniform disk is constrained to rotate about an axis passing through its center and perpendicular to the plane of the disk. If the disk starts from rest and is then brought in contact with a spinning rubber wheel, we observe that the disk gradually begins to rotate too. If after 35 s of contact with this spinning rubber wheel, the disk has an angular velocity of 4.0 rad/s, find the average angular acceleration that the disk experiences. (Assume the positive direction is in the initial direction of rotation of the disk. Indicate the direction with the sign of your answer.)
Assume after 35 s of contact with this spinning rubber wheel, the disk has an angular velocity of 11.0 rad/s.
Answer:
385 rad
Explanation:
The expression for the angular acceleration of a disk that is in contact with a spinning wheel can be given as:

where
= 



Angular displacement of a disk can be calculated by using the formula:

substituting 11.0 rad/s for
and t = 35 s ; we have:


Answer:
<h2>1320 J</h2>
Explanation:
The work done by an object can be found by using the formula
workdone = force × distance
From the question we have
workdone = 600 × 2.2
We have the final answer as
<h3>1320 J</h3>
Hope this helps you
Answer:
Therefore the terminal velocity = 1.45 m/s
Explanation:
Terminal velocity: Terminal velocity is the highest velocity of an object when it falls from rest trough a media.

= terminal velocity
w = weight of the object = mg
= drag coefficient=0.80
A= frontal area
= media density = 1.2 kg/m³
m = mass = 8 kg
g= acceleration due to gravity = 9.8 m/s²
Front area = length× breadth
= (18×47)cm²
=846 cm²
Therefore the terminal velocity

=1.45 m/s
Therefore the terminal velocity = 1.45 m/s
Answer:
Specific heat
Explanation:
The specific heat is the amount of heat, that is energy in transfer to or from a thermodynamic system, required to raise the temperature of 1 g of substance by one degree Celsius or one Kelvin, since one degree on the Celsius scale is equal to one Kelvin.
Answer:
Impulse
Explanation:
Impulse is force times time