Answer:
V = 43.95 L
Explanation:
Given data:
Mass of CH₄ decomposed = 15.63 g
Volume of H₂O produced at STP = ?
Solution:
Chemical equation:
CH₄ + 2O₂ → 2H₂O + CO₂
Number of moles of CH₄:
Number of moles = mass/molar mass
Number of moles = 15.63 g/ 16 g/mol
Number of moles = 0.98 mol
Now we will compare the moles of H₂O with CH₄.
CH₄ : H₂O
1 : 2
0.98 : 2×0.98 = 1.96 mol
Volume of hydrogen:
PV = nRT
1 atm × V = 1.96 mol × 0.0821 atm.L/mol.K × 273.15 K
V = 43.95atm.L / 1atm
V = 43.95 L
The gas particles squeeze closer together
From the calculation, the standard free energy of the system is -359kJ.
<h3>What is the standard free-energy?</h3>
The standard free-energy is the energy present in the system. We have to first obtain the cell potential using the formula;
Ereduction - E oxidation = 0.96 V - 0.34 V = 0.62 V
Using the formula;
ΔG = -nFEcell
ΔG =-(6 * 96500 * 0.62)
ΔG =-359kJ
Learn more about free energy:brainly.com/question/15319033
#SPJ1
Answer:
The Empirical Formula.
Explanation:
From the empirical formula and using the weight (in g) of a given substance, we can come up with the molecular formula which is the actual weight of a substance. Sometimes, we find that the empircal formula is the molecular formula.
Answer:Ocean water is constantly moving, and not only in the form of waves and tides. Ocean currents flow like vast rivers, sweeping along predictable paths. Some ocean currents flow at the surface; others flow deep within water. Some currents flow for short distances; others cross entire ocean basins and even circle the globe.
By moving heat from the equator toward the poles, ocean currents play an important role in controlling the climate. Ocean currents are also critically important to sea life. They carry nutrients and food to organisms that live permanently attached in one place, and carry reproductive cells and ocean life to new places.
Explanation:
i got this off my chemistry sight.. your welcome