Answer:
− 1049
Step-by-step explanation:
-13.62-(27.9)
Primero los paréntesis:
-13.62-243
Luego continuamos por las multiplicaciones:
-806 - 243
Finalmente obtenemos:
− 1049
Espero te ayude :)
Answer:
The answer would be 9.0.
Step-by-step explanation:
Hope it help you.
Answer:
-6s-c+1
Step-by-step explanation:
(-3s-4c+1)+(-3s+3c)
We have been given the above expression. To find the sum, we simply collect the like terms and combine them;
(-3s-4c+1)+(-3s+3c) = -3s + -3s -4c + 3c + 1
-3s + -3s -4c + 3c + 1 = -3s - 3s + 3c - 4c + 1
-3s - 3s + 3c - 4c + 1 = -6s - c + 1
Therefore;
(-3s-4c+1)+(-3s+3c) = -6s-c+1
Answer:
26 ft
Step-by-step explanation:
I'm guessing this is how it's done
60-40= 20
there for at this time any shadow would be 20x it's original height/length
so 6+20=26 ft
lmk if I'm correct
<span>Point G cannot be a centroid because JG is shorter than GE.
Without the diagram, this problem is rather difficult. But given what a centroid is for a triangle, let's see what statements make or do not make sense. Assumptions made for this problem.
G is a point within the interior of the triangle HJK.
E is a point somewhere on the perimeter of triangle HJK and that a line passing from that point to a vertex of triangle HJK will have point G somewhere on it.
Point G cannot be a centroid because JG does not equal GE.
* If G was a centroid, then JG would not be equal to GE because if that were the case, you could construct a circle that's both tangent to all sides of the triangle while simultaneously passing through a vertex of the triangle. That's impossible, so this can't be the correct choice.
Point G cannot be a centroid because JG is shorter than GE.
* This statement would be true. So this is a good possibility as the correct answer assuming the above assumptions are correct.
Point G can be a centroid because GE and JG are in the ratio 2:1.
* There's no fixed relationship between the lengths of the radius of a circle who's center is at the centroid and the distance from that center to a vertex of the triangle. And in fact, it's highly likely that such a ratio will not even be constant within the same triangle because it will only be constant of the triangle is an equilateral triangle. So this statement is nonsense and therefore a bad choice.
Point G can be a centroid because JG + GE = JE.
* Assuming that the assumption about point E above is correct, then this relationship would hold true for ANY point E on the side of the triangle that's opposite to vertex J. And only 1 of the infinite possible points is correct for the line JE to pass through the centroid. So this is also an incorrect choice.
Since of the 4 available choices, all but one are complete and total nonsense when speaking about a centroid in a triangle, that one has to be the correct answer. So "Point G cannot be a centroid because JG is shorter than GE."</span>