Answer:
51.53 grams .
Explanation:
Na₃PO₄ ⇄ 3Na⁺¹ + PO₄⁻³ .
1 mole 3 mole
725 mL of 1.3 M Na⁺ ions
= .725 x 1.3 moles of Na⁺ ions
= .9425 moles
3 mole of Na⁺ is formed by 1 mole of Na₃PO₄
.9425 mole of Na⁺ is formed by .9425/3 mole of Na₃PO₄
Na₃PO₄ needed = .9425/3 moles = .3142 moles
Molecular weight of Na₃PO₄ = 164
grams of Na₃PO₄ needed = .3142 x 164 = 51.53 grams .
When you boil water, you aren't changing the elements. You're just making water vapor. However, when you burn paper, it becomes carbon (mostly). So physical changes will not change the substance, only chemical changes will.
Answer:
-5.51 kJ/mol
Explanation:
Step 1: Calculate the heat required to heat the water.
We use the following expression.

where,
- c: specific heat capacity
- m: mass
- ΔT: change in the temperature
The average density of water is 1 g/mL, so 75.0 mL ≅ 75.0 g.

Step 2: Calculate the heat released by the methane
According to the law of conservation of energy, the sum of the heat released by the combustion of methane (Qc) and the heat absorbed by the water (Qw) is zero
Qc + Qw = 0
Qc = -Qw = -22.0 kJ
Step 3: Calculate the molar heat of combustion of methane.
The molar mass of methane is 16.04 g/mol. We use this data to find the molar heat of combustion of methane, considering that 22.0 kJ are released by the combustion of 64.00 g of methane.

A combustion reaction is a reaction that reacts in the presence of oxygen molecules. Methane will release -3115 kJ/mol of heat.
<h3>What is a combustion reaction?</h3>
A combustion reaction includes the reaction between the chemical reactant and oxygen molecule to produce the product. The combustion reaction between methane and oxygen is given as:
CH₄(g) + 2O₂ (g) → CO₂(g) + 2H₂O (l), ΔH = -890 kJ/mol
The stoichiometry coefficient from the reaction gives 1 mole of methane releases -890 kJ/mol enthalpy.
So, 3.5 moles methane will release = 3.5 × -890 = -3115 kJ/mol
Therefore, -3115 kJ/mol of heat is released.
Learn more about combustion reaction here:
brainly.com/question/27823881
#SPJ1
Answer: hello some part of your question is missing below is the missing part
when H₂O and H₂O₂ is added to Mn(OH)₂(s) and put in water bath to dissolve
answer : attached below
Explanation:
When Mn²⁺ ions are separated from the mixture, attached below are the requires reaction equations that shows the process of separation.
Mn²⁺ ions are separated to the right of the reaction equations