ANSWER IS CONDUCTION. HOPE THIS HELPED!
Answer:
B) The term "inert" was dropped because it no longer described all the group 8A elements.
Explanation:
Inert elements in chemistry simply refers to elements that are chemically inactive and are not expected to form any compounds. this is the general belief for the group 8 elements as they all have complete duplet/octet configurations (and ideally, they ought to be very stable with no tendency to form compounds by participating in the loss and gain of electrons). However the discovery of compounds like xenon tetrafluoride (XeF4) proved this to be wrong.
Again, the reason the term - inert gses was droppedis beacause this term is not strictly accurate because several of them do take part in chemical reactions.
After dropping the term - Inert gases, they are now referred to as noble gases.
<h3>Answer:</h3>
Strontium (Sr)
<h3>Explanation:</h3>
The condition given in statement is the presence of two valence electron. Hence, first we found the electronic configuration of given atoms as follow;
Rubidium [Kr] 5s¹
Strontium [Kr] 5s²
Zirconium [Kr] 4d² 5s²
Silver [Kr] 4d¹⁰ 5s¹
From above configurations it is cleared that only Strontium and Zirconium has two electrons in its valence shell.
We also know that s-block elements are more reactive than transition elements due to less shielding effect in transition elements hence, making it difficult for transition metals to loose electrons as compared to s-block elements. Therefore, we can conclude that Strontium present in s-block with two valence electrons is the correct answer.
<h2><u>Full Question:</u></h2>
In hemoglobin, a single amino acid change at position 6 from Glu to Val has major consequences on hemoglobin structure that makes the molecule defective leading to sickle cell anemia. Predict whether the following hypothetical change would or would not have a major effect at position 6. Briefly explain (1-2 sentences). Glu to Leu Hint: Look at the structures of the R groups and consider their chemical properties
<h2><u>Answer:</u></h2>
The structure of the haemoglobin, hence the RBC won't be same as normal.
<h3><u>Explanation:</u></h3>
Both the leucine and glutamic acid are alpha amino acids which have an alpha carboxylic acid group and an alpha amino group. The variable in case of glutamic acid is propyl acid while the variable in case of leucine is isobutyl.
The glutamic acid is the normal amino acid of the 6th position of Beta chain of hemoglobin. Its an acid group, so can form bonds with another base inside the haemoglobin, or can form other hydrogen bonds. But the isobutyl group is an alkyl group. So it doesn't have that much effect in the recovering the structure, and sickle cell anemia prevails.