Answer:
Choice a.
, assuming that the skating rink is level.
Explanation:
<h3>Net force in the horizontal direction</h3>
There are two horizontal forces acting on the boy:
- The pull of his friend, and
- Frictions.
The boy should be moving in the direction of the pull of his friend. The frictions on this boy should oppose that motion. Therefore, the frictions on the boy would be in the opposite direction of the pull of his friend.
The net force in the horizontal direction should then be the difference between the pull of the friend, and the friction on this boy.
.
<h3>Net force in the vertical direction</h3>
The net force on this boy should be zero in the vertical direction. Consider Newton's Second Law of motion. The net force on an object is proportional to its acceleration. In this question, the net force on this boy in the vertical direction should be proportional to the vertical acceleration of this boy.
However, because (by assumption) the ice rink is level, the boy has no motion in the vertical direction. His vertical acceleration will be zero. As a result, the net force on him should also be zero in the vertical direction.
<h3>Net force</h3>
Therefore, the (combined) net force on this boy would be:
.
For a simple harmonic motion energy is given with:

Where k is a constant that depends on the type of the wave you are looking at and A is amplitude.
Let's calculate the energy of the wave using two different amplitudes given in the problem:

We can see that energy associated with the wave is 4 times smaller when we decrease its amplitude by half. So the answer should be C.
Answer:
As wind or an ocean current moves, the Earth spins underneath it. ... The Coriolis effect bends the direction of surface currents to the right in the Northern Hemisphere and left in the Southern Hemisphere.
Explanation:
The Coriolis effect causes winds and currents to form circular patterns.
<span> The boiling point of water at sea level is 100 °C. At higher altitudes, the boiling point of water will be.....
a) higher, because the altitude is greater.
b) lower, because temperatures are lower.
c) the same, because water always boils at 100 °C.
d) higher, because there are fewer water molecules in the air.
==> e) lower, because the atmospheric pressure is lower.
--------------------------
Water boils at a lower temperature on top of a mountain because there is less air pressure on the molecules.
-------------------
I hope this is helpful. </span>
At -40.
-40 gives the same reading for Fahrenheit and Celsius scale.