1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fittoniya [83]
3 years ago
12

On a planet where g = 10.0 m/s2 and air resistance is negligible, a sled is at rest on a rough inclined hill rising at 30°. The

initial position is 8.0 m up the hill along the slope from the bottom. The object is allowed to move and it stops on a rough horizontal surface, at a distance of 4.0 m from the bottom of the hill. The coefficient of kinetic friction on the hill is 0.40. What is the coefficient of kinetic friction between the horizontal surface and the sled?

Physics
2 answers:
Cloud [144]3 years ago
8 0

Answer:

Explanation:

a is the acceleration

μ is the coefficient of friction

Acceleration of the object is given by

a = g (\sin  \theta -\mu \cos \theta)\\\\=10( \sin 30 - 0.4 \cos 30)\\\\=10(0.5-0.3464)\\\\=1.54m/s^2

Velocity at the bottom

v^2=u^2+2as\\\\u=0\\\\v^2=2as\\\\=2*1.54*8\\\\=24.576\\\\v=4.96m/s

after travelling 4m , its velocity becomes 0

a=\frac{v^2-u^2}{2s}

a=\frac{0-u^2}{2s}

a=\frac{-(-4.96)^2}{2*4} \\\\=-3.075m/s^2

Coefficient of kinetic friction

μ = F/N

=\frac{ma}{mg} \\\\=\frac{3.075}{10} \\\\=0.31

Therefore, the Coefficient of kinetic friction is 0.31

Romashka-Z-Leto [24]3 years ago
5 0

Answer:

Coefficient of kinetic friction = 0.31

Explanation:

g = 10 m/s²

distance covered up the hill, S = 8 m

Horizontal distance covered, d = 4 m

From the free body diagram attached:

ma =  mgsin \theta - \mu_{k} N\\N = mgcos \theta\\ma = mgsin \theta - \mu_{k} mgcos \theta\\a = gsin \theta - \mu_{k} gcos \theta\\a = 10sin 30 - (0.4*10cos30)\\a = 1.4 m/s^2

The velocity at the bottom can be calculated by:

v^{2} = u^{2} + 2aS\\u = 0 m/s\\v^{2} = 2aS\\v^{2} = 2*1.54*8\\v^{2} = 24.64\\v = 4.96 m/s

Work done through to frictional force = change in kinetic energy:

f_{k} d = 0.5 mv^{2} \\\mu_{k} mgd = 0.5mv^{2} \\\mu_{k} = \frac{0.5v^{2} }{gd} \\\mu_{k} = \frac{0.5*4.96^{2} }{10*4} \\\mu_{k} = 0.31

You might be interested in
Newtons prism experiments showed that white sunlight is made up of
DanielleElmas [232]
All the colors of the visible spectrum
4 0
3 years ago
Read 2 more answers
The 20-g bullet is travelling at 400 m/s when it becomes embedded in the 2-kg stationary block. The coefficient of kinetic frict
nikklg [1K]

Answer:

The distance the block will slide before it stops is 3.3343 m

Explanation:

Given;

mass of bullet, m₁ = 20-g = 0.02 kg

speed of the bullet, u₁ =  400 m/s

mass of block, m₂ = 2-kg

coefficient of kinetic friction,  μk = 0.24

Step 1:

Determine the speed of the bullet-block system:

From the principle of conservation of linear momentum;

m₁u₁ + m₂u₂ = v(m₁ + m₂)

where;

v is the speed of the bullet-block system after collision

(0.02 x 400) + (2 x 0) = v (0.02 + 2)

8 = v (2.02)

v = 8/2.02

v = 3.9604 m/s

Step 2:

Determine the time required for the bullet-block system to stop

Apply the principle of conservation momentum of the system

v(m_1+m_2) -F_kt = v_f(m_1 +m_2)\\\\v(m_1+m_2) -N \mu_kt = v_f(m_1 +m_2)\\\\v(m_1+m_2) -g(m_1 +m_2) \mu_kt = v_f(m_1 +m_2)\\\\3.9604(2.02)-9.8(2.02)0.24t = v_f(2.02)\\\\8 - 4.751t = 2.02v_f\\\\3.9604 - 2.352t = v_f

when the system stops, vf = 0

3.9604 -2.352t = 0

2.352t = 3.9604

t = 3.9604/2.352

t = 1.684 s

Thus, time required for the system to stop is 1.684 s

Finally, determine the distance the block will slide before it stops

From kinematic, distance is the product of speed and time

S = \int\limits {v} \, dt \\\\S = \int\limits^t_0 {(3.9604-2.352t)} \, dt\\\\ S = 3.9604t - 1.176t^2

Now, recall that t = 1.684 s

S = 3.9604(1.684) - 1.176(1.684)²

S = 6.6693 - 3.3350

S = 3.3343 m

Thus, the distance the block will slide before it stops is 3.3343 m

3 0
3 years ago
Read 2 more answers
The initial speed of a body is 7.1 m/s. What is its speed after 2.23 s if it accelerates uniformly at 2.64 m/s 2 ? Answer in uni
Nana76 [90]

13.0m/s

1.2m/s

Explanation:

Given parameters:

Initial speed of the body = 7.1m/s

time taken = 2.23s

Acceleration = 2.64m/s²

Unknown:

Final speed = ?

Solution:

Acceleration is the rate of change of velocity with time.

   a = \frac{V - U}{T}

a  = acceleration

V = final speed

U = initial speed

T = time taken

  Input the variables and solve for V;

 

   2.64 = \frac{V - 7.1}{2.23}  

  V - 7.1 = 5.9                              expression 1

  V = 5.9 + 7.1 = 13.0m/s

B

Using the same parameters, the speed after a uniform deceleration of -2.64m/s², the negative sign implies deceleration;

 from expression 1;

           V - 7.1  = -5.9

           V = -5.9 + 7.1 = 1.2m/s

learn more:

Acceleration brainly.com/question/3820012

#learnwithBrainly

5 0
3 years ago
Do Small objects exert no gravitational force ? True or false
Zanzabum

Answer:

False -    

F = G M1 M2 / R^2

So F depends on M1 and M2 and as long either is not zero there will be a gravitational force between them.

6 0
2 years ago
Time Intervals in Ice Ages
stepladder [879]
It started off with 68% less than it did at the peak, and later created a void and melted the remainder of the ice at about 92%
8 0
3 years ago
Other questions:
  • HELP ME ASAP PLEASE
    11·1 answer
  • ) a box weighing 77.0 n rests on a table. a rope tied to the box runs vertically upward over a pulley and a weight is hung from
    13·1 answer
  • Derek runs 4 laps around the track. If each lap around the track is 0.25 miles long, and he starts and stops in the same locatio
    5·2 answers
  • Help please 80pnts and brainliest guaranteed
    7·1 answer
  • A crowbar is used as a lever. The effort force of 40 newtons moves 3 meters. The resistance force of 54 newtons moves 2 meters.
    13·2 answers
  • When an element undergoes nuclear transmutation, the result is a completely different
    8·2 answers
  • What is your weight on Venus, assuming that the acceleration due to gravity on Venus is 8.875 m/s^2 and your mass is 50 kg.
    15·2 answers
  • A quantity of gas is contained in a sealed container of fixed volume. The temperature of the
    5·1 answer
  • A thermometer has its term marked millimeter instead of degree celcuis .The lower fixed point is 30mm and upper fixed point is 1
    13·1 answer
  • How to cure bor-edom????
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!