Gas because liquids and solids volumes don't change from switching containers.
P= w/t and W= Work
In this case, W= 6,700j, and T= 45 seconds
Power is the ratio of work per unit time. When you perform a work in a given span of time, the ratio of work performed with respect to time is Called Power.
si unit for Power is Watt (W)
so, P= 6,700/45
P= 148
Final answer is P=148
Answer:
Velocity.
Explanation:
Projectile motion is characterized as the motion that an object undergoes when it is thrown into the air and it is only exposed to acceleration due to gravity.
As per the question, 'any change in the initial velocity of the projectile(object having gravity as the only force) would lead to a change in the range as well as the maximum height of the projectile.' To illustrate numerically:
Horizontal range: As per expression:
R= (
*sin2θ)/g
the range depending on the square of the initial velocity.
Maximum height: As per expression:
H= (
*
θ
)/2g
the maximum distance also depends upon square of the initial velocity.
Can you please give the phrases?
But, I'll help what I can.
First, he was the first to discover gravity. He was not bonked by the head by an apple, rather he watched an apple fall from a tree before he decided to explore gravity further.
He was also the first scientist to be knighted, which is a great honor, as you can expect.
Newton also developed The Three Laws of Motion. They are extremely important to physics and are considered some of the foundation for physics today.
He also discovered calculus, which is complex math that is very helpful to scientists today.
He also discovered the color spectrum using a glass prism, a dark room and window shade with a hole in it. He was able to project the color spectrum onto a piece of paper.
Those are the few I can think of now, but hope it helps!
Answer:
w = 4,786 rad / s
, f = 0.76176 Hz
Explanation:
For this problem let's use the concept of angular momentum
L = I w
The system is formed by the two discs, during the impact the system remains isolated, we have the forces are internal, this implies that the external torque is zero and the angular momentum is conserved
Initial Before sticking
L₀ = 0 + I₂ w₂
Final after coupling
= (I₁ + I₂) w
The moments of inertia of a disk with an axis of rotation in its center are
I = ½ M R²
How the moment is preserved
L₀ = 
I₂ w₂ = (I₁ + I₂) w
w = w₂ I₂ / (I₁ + I₂)
Let's reduce the units to the SI System
d₁ = 60 cm = 0.60 m
d₂ = 40 cm = 0.40 m
f₂ = 200 min-1 (1 min / 60 s) = 3.33 Hz
Angular velocity and frequency are related.
w₂ = 2 π f₂
w₂ = 2π 3.33
w₂ = 20.94 rad / s
Let's replace
w = w₂ (½ M₂ R₂²) / (½ M₁ R₁² + ½ M₂ R₂²)
w = w₂ M₂ R₂² / (M₁ R₁² + M₂ R₂²)
Let's calculate
w = 20.94 8 0.40² / (12 0.60² + 8 0.40²)
w = 20.94 1.28 / 5.6
w = 4,786 rad / s
Angular velocity and frequency are related.
w = 2π f
f = w / 2π
f = 4.786 / 2π
f = 0.76176 Hz