Answer:
The woman's distance from the right end is 1.6m = (8-6.4)m.
The principles of moments about a point or axis running through a point and summation of forces have been used to calculate the required variable.
Principle of moments: the sun of clockwise moments must be equal to the sun of anticlockwise moments.
Also the sun of upward forces must be equal to the sun of downward forces.
Theses are the conditions for static equilibrium.
Explanation:
The step by step solution can be found in the attachment below.
Thank you for reading this solution and I hope it is helpful to you.
Answer:
The process by which the balloon is attracted and possibly sticks to the wall is known as static electricity which is the attraction or repulsion between electric charges which are not free to move.
The wall is an insulator.
Explanation:
When a balloon is blown and tied off, and then the balloon is rubbed on the woolly object once in one direction, and the side that was rubbed against the wool is brought near a wall and then released, it is observed that the balloon is attracted to and sticks to the wall. The above observation is due to static electricity.
Static electricity refers to electric charges that are not free to move or that are static. One of the means of generating such charges is by friction. When the balloon is rubbed on the woollen material, electrons are given away to the balloon's surface. Since the balloon is an insulator (materials which do not allow electricity to pass through them easily), the electrons are not free to move. When the balloon is brought near to a wall, there is a rearrangement of the charges present on the wall. Negative charges on the wall move farther away while the positive charges on the wall are attracted to the electrons on the balloon's surface. Because the wall is also an insulator, the charges are not discharged immediately. Therefore, this attraction between opposite charges as well as the static nature of the charges results in the balloon sticking to the wall.
Answer:
In a closed system, the total energy is conserved or remains the same as energy transformations take place.
Explanation:
The law of conservation of energy states that energy cannot be created or destroyed but can be transformed from one form to another.
This law of conservation of energy applies only to a closed system. A closed system is a system which does not exchange energy with its surroundings. All forms of energy conversions occurring within a closed system does not result in an increase or decrease of the total energy of the system, rather, energy remains constant. For example, the universe is a closed system in that all forms of energy conversions occurs within it and energy is not exchanged with an external environment. However, the earth is not a closed system as some of the energy it receives from the sun can be radiated out into space. Since it's an open system, its total energy can change.
Well it's energy comes from the sun since the sun gives it sunlight to help it grow
ANSWER:
D) centripetal acceleration.
STEP-BY-STEP EXPLANATION:
When a body performs a uniform circular motion, the direction of the velocity vector changes at every instant. This variation is experienced by the linear vector, due to a force called centripetal, directed towards the center of the circumference that gives rise to the centripetal acceleration.
Therefore, the answer is centripetal acceleration.