Answer:
Option D: Four times the original speed.
Explanation:
A centripetal force accelerates a body by changing the direction of the body's velocity without changing the body's speed.
The speed(v) is therefore constant, thereby making the magnitudes of the of the acceleration and the force constant.
The formula used to calculate the Centripetal force is given below:

where F represents the Centripetal force, m represents the mass of the moving body, v represents the speed or velocity at which the body is moving and r represents the radius.
Making the speed the subject of the formula: 
Therefore, when the radius (r) is changed to 4r, i.e r = 4r
speed(v) becomes 
After comparing, the difference between the speeds is Four times the original speed.
We know that tangential acceleration is related with radius and angular acceleration according the following equation:
at = r * aa
where at is tangential acceleration (in m/s2), r is radius (in m) aa is angular acceleration (in rad/s2)
So the radius is r = d/2 = 1.2/2 = 0.6 m
Then at = 0.6 * 5 = 3 m/s2
Tangential acceleration of a point on the flywheel rim is 3 m/s2
Explanation:
Below is an attachment containing the solution.
Answer:
The time is 
Explanation:
Given that,
Capacitor = 120 μF
Voltage = 150 V
Resistance = 1.8 kΩ
Current = 50 mA
We need to calculate the discharge current
Using formula of discharge current

Put the value into the formula


We need to calculate the time
Using formula of current

Put the value into the formula





Hence, The time is 
The answer is A) accumulation zone