<span><span>Given the equation of a circle"<span>x^2 + y^2 - 4x +6y -36 = 0</span>We will use completing the square method to rewrite the equation into the form:(x-a)^2 + (y-b)^2 = r^2 where (a,b) is the center and r is the radius.Let us rewrite the terms.==> x^2 - 4x + y^2 + 6y = 36Now we will complete the square for both x^2 ands y^2.We will add [( coefficient of x)/2]^2 and [(coefficients of y)/2]^2 to both sides.Then we will add :(4/2)^2 = 2^2 = 4(6/2)^2 = 3^2 = 9Then we will add 4 and 9 to both sides.==> x^2 - 4x +4 + y^2 + 6y + 9 = 36 + 4 + 9==> (x-2)^2 + (y+3)^2 = 49==> (x-2)^2 + (y+3)^2 = 7^2Now we will compare the equation withe the standard form of a circle.Then we conclude that:<span>The center of the circle is: ( 2, -3) and the radius is 7.</span></span></span>
1/5= 4/20
3/4= 15/20
3+2= 5
5 and 19/20
Answer:
$360,000
Step-by-step explanation:
The correct question is
Use the given information to find the exact value of the expression. sin α = 21/29, α lies in quadrant II, and cos β = 15/17, β lies in quadrant I Find sin (α - β).
we know that
sin(α − β<span>) = </span>sin α cos β − cos α sin β
α lies in quadrant II
so
cos α is negative
sin α is positive
β lies in quadrant I
so
cos β is positive
sin β is positive
step 1
find sin β
cos β=15/17
sin² β+cos² β=1-----------> sin² β=1-cos² β----> sin² β=1-(15/17)²
sin² β=1-225/289-----> 64/289
sin β=8/17
step 2
find cos α
sin α = 21/29
cos² α + sin² α=1----> cos² α=1-sin² α---> cos² α=1-(21/29)²---> 1-441/841
cos² α=400/841------> cos α=-20/29 (remember cos α is negative)
step 3
find sin(α − β)
sin α = 21/29 cos α=-20/29
sin β=8/17 cos β=15/17
sin(α − β) = [21/29]*[15/17] − [-20/29*]*[8/17]
sin(α − β) = [315/493] − [-160/493]
sin(α − β) = 475/493
the answer is
sin(α − β) = 475/493
Step-by-step explanation:
4.
⇒ 
⇒ 
⇒ 
⇒ 
5.
⇒ 
⇒ 
As we know the radius and slant height, we can use Pythagoras' Theorem to find the perpendicular height.
⇒ 
⇒ 
⇒ 
⇒ 
Now substitute this into the volume formula.
⇒ 
⇒ 
⇒ 
6.
⇒ 
⇒ 
⇒ 
7.
⇒ 
⇒ 
⇒ 