1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ra1l [238]
3 years ago
12

What two simple machines are found in a bike?

Physics
1 answer:
omeli [17]3 years ago
3 0
I think it's a pulley and a lever.
You might be interested in
A large crate is suspended from the end of a vertical rope. Is the tension in the rope greater when the crate is at rest or when
choli [55]

Answer:

Part a)

the tension force is equal to the weight of the crate

Part b)

tension force is more than the weight of the crate while accelerating upwards

tension force is less than the weight of crate if it is accelerating downwards

Explanation:

Part a)

When large crate is suspended at rest or moving with uniform speed then it is given as

F_t - mg = ma

here since speed is constant or it is at rest

so we will have

a = 0

F_t = mg

so the tension force is equal to the weight of the crate

Part b)

Now let say the crate is accelerating upwards

now we can say

F_t - mg = ma

F_t = mg + ma

so tension force is more than the weight of the crate

Now if the crate is accelerating downwards

F_t - mg = -ma

F_t = mg - ma

so tension force is less than the weight of crate if it is accelerating downwards

4 0
3 years ago
As you move away from a positive charge distribution, the electric field:
GalinKa [24]

Answer:

The electric field always decreases.

Explanation:

The electric field due to a point charge is given by :

E=\dfrac{kq}{r^2}

Where

k = electric constant

q = charge

r = distance from the charge

It is clear from the above equation that as the distance from the charge particle increases the electric field decreases. As you move away from a positive charge distribution, the electric field always decreases. Hence, the correct option is (c) "Always decreases".

3 0
3 years ago
A 2.0 kg sphere with a velocity of 6.0 m/s collides head-on and elastically with a stationary 10 kg sphere
dmitriy555 [2]

Question: A 2.0 kg sphere with a velocity of 6.0 m/s collides head-on and elastically with a stationary 10 kg sphere, What is thier velocities after collision.

Answer:

v = 6 m/s, v' = 0 m/s

Explanation:

From the question,

For Elastic collision,

mu+m'u' = mv+m'v'......................... Equation 1

Where m = mass of the first sphere, m' = mass of the second sphere, u = initial velocity of the first sphere, u' = initial velocity of the second sphere, v = final veolocity of the first sphere, v' = final velocity of the second sphere.

Also,

The relative velocity before collision = relative velocity after collision

u-u' = v-v'............................ Equation 2

Given:  m = 2 kg, m' = 10 kg, u = 6 m/s, u' = 0 m/s

Substitute into equation 1 and 2

2(6)+10(0) = 2v+10v'

2v+10v' = 12.............. Equation 3

6-0 = v-v'

v-v' = 6 ................... Equation 4

Solve equation 3 and 4 simultaneously.

v = 6+v'............. Equation 5

Substitute equation 5 into equation 3

2(6+v')+10v' = 12

12+2v'+10v' = 12

12v' = 12-12

v' = 0/12

v' = 0 m/s.

Also substitute the value of v' into equation 5

v = 6+0

v = 6 m/s

5 0
3 years ago
A ball is kicked from the top of a building with a velocity of 50 m/s and lands 165 m away from the base of the buildi
solniwko [45]

Answer:

32.3 m/s

Explanation:

The ball follows a projectile motion, where:

- The horizontal motion is a uniform motion at costant speed

- The vertical motion is a free fall motion (constant acceleration)

We start by analyzing the horizontal motion. The ball travels horizontally at constant speed of

v_x = 50 m/s

and it covers a distance of

d = 165 m

So, the total time of flight of the ball is

t=\frac{d}{v_x}=\frac{165}{50}=3.3 s

In order to find the vertical velocity of the ball, we have now to analyze its vertical motion.

The vertical motion is a free-fall motion, so the ball is falling at constant acceleration; therefore we can use the following suvat equation:

v_y = u_y +at

where

v_y is the vertical velocity at time t

u_y=0 is the initial vertical velocity

a=g=9.8 m/s^2 is the acceleration  of gravity (taking downward as positive direction)

Substituting t = 3.3 s (the time of flight), we find the final vertical velocity of the ball:

v=0 + (9.8)(3.3)=32.3 m/s

5 0
3 years ago
The magnetic field 0.0 2M from a wire is 0.1 T. What is the magnitude of the magnetic field of 0.0 1M from the same wire?
Anika [276]

Answer:

Explanation:

Question

5 0
2 years ago
Other questions:
  • As a particle moves 10.0 m along an electric field of strength 75 N/C, its electrical potential energy decreases by 4.8 × 10-16
    15·1 answer
  • Two large, flat, horizontally oriented plates are parallel to each other, a distance d apart. Half way between the two plates th
    11·1 answer
  • A car is moving at 18 m/s when it accelerates at 8 m/s2 for 2 sec. What is his new velocity ?
    14·1 answer
  • The moment of inertia of a uniform equilateral triangle with mass m and side length a about an axis through one of its sides and
    15·1 answer
  • What is the relationship between wavelength of light and the quantity of energy per photon?
    12·2 answers
  • What is the total distance traveled in km
    13·2 answers
  • _SeC16+_O2>_SeO2+_C12
    15·1 answer
  • Diffraction occurs for all types of waves, including sound waves.<br><br> a. True<br> b. False
    10·1 answer
  • The area of a piston of a force pump is 8 X 10⁴m². What force must be
    6·1 answer
  • 10. Suppose the tern travels 1.70*10^ km south, only to encounter bad weatherInstead of trying to fly around the stormthe tem tu
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!