Answer:
v₀ = 16.55 m/s
Explanation:
This motion of the ball can be modeled as a projectile motion with following data:
R = Range of Projectile = 27.5 m
θ = Launch Angle = 50°
g = acceleration due to gravity = 9.81 m/s²
v₀ = Initial Speed of Ball = ?
Therefore, using formula for range of projectile, we have:

<u>v₀ = 16.55 m/s</u>
Answer:
By 16.7% or 0.167 IPM
Explanation:
Substracting the final IPM (6.088) to the initial IPM (5.921) gives us the net difference, which is how much did it increase in IPM. Multiplying this number by 100 gives us the percentual increase in the feed rate.
Kinetic Energy = (1/2) (mass) (speed)
First runner: KE = (1/2) (45kg) (49 m/s) = 1,102.5 Joules
Second runner: KE = (1/2) (93kg) (9 m/s) = 418.5 Joules
The <em>first runner </em><em>has 163</em>% more kinetic energy than the second runner has.
Answer:
(a) 4.0334Ω
(b)parallel
Explanation:
for resistors connected in parallel;

Req =3.03Ω , R1 =12.18Ω



R2=1/0.2479
R2=4.0334Ω
(b)parallel connection is suitable for the desired total resistance. series connection can not be used to achieve a lower resistance as the equation for series connection is.
Req = R1+R2
Answer:
Fnet = 0
Explanation:
- Since the block slides across the floor at constant speed, this means that it's not accelerated.
- According Newton's 2nd Law, if the acceleration is zero, the net force on the sliding mass must be zero.
- This means that there must be a friction force opposing to the horizontal component of the applied force, equal in magnitude to it:

- In the vertical direction, the block is not accelerated either, so the sum of the normal force and the vertical component of the applied force, must be equal in magnitude to the force of gravity on the block:

⇒ 169 N + Fn = Fg = 216 N (3)
- This means that there must be a normal force equal to the difference between Fappy and Fg, as follows:
- Fn = 216 N - 169 N = 47 N (4)