<u>Answer:</u>
The equation through (-3, -2) and perpendicular to y = x – 1 is y = -x -5 and option c is correct.
<u>Solution:</u>
Given, line equation is y = x – 1 ⇒ x – y – 1 = 0. And a point is (-3, -2)
We have to find the line equation which is perpendicular to above given line and passing through the given point.
Now, let us find the slope of the given line equation.

We know that, <em>product of slopes of perpendicular lines is -1.
</em>
So, 1
slope of perpendicular line = -1
slope of perpendicular line = -1
Now let us write point slope form for our required line.

y – (-2) = -1(x – (-3))
y + 2 = -1(x + 3)
y + 2 = -x – 3
x + y + 2 + 3 = 0
x + y + 5 = 0
y = -x -5
Hence the equation through (-3, -2) and perpendicular to y = x – 1 is y = -x -5 and option c is correct.
Answer: Question 1 :B,D.
Question 2:option B,
Question 3:Degree=5.
Question 4:option D.
Question 5: option c.
Step-by-step explanation:
1) A polynomial can not have any exponent as a variable or a fraction.
Options B and D are polynomials.
2) The polynomial is having 3 terms and is of degree 3.so it is a cubic trinomial Option B.
3) Degree is the highest power of the variables in the terms .The term
has the power=3+2=5
So degree =5.
4)
Option D
5)
Simplifying like terms,
=
Option c.
Answer:
2.6 feet per step
Step-by-step explanation:
Answer:
Step-by-step explanation:
The foci are horizontally aligned.
horizontal ellipse:
(x-h)²/a² + (y-k)²/b² = 1
center (h,k)
vertices (h±a,k)
length of minor axis = 2b
foci (h±c,k), c² = a²-b²
Apply your data and solve for h, k, a, and b.
foci (±3√19, 6)
h = 0
k = 6
Length of minor axis = 2b = 10
b = 5
foci (h±3√19, 6)
c = 3√19
c³ = a² - b²
171 = a² - 25
a² = 196
x²/196 + (y-6)²/25 = 1
Answer:
whats the question
Step-by-step explanation: