The <span>first law of thermodynamics</span><span> is a version of the law of </span>conservation of energy<span>, adapted for </span>thermodynamic systems<span>. The law of conservation of energy states that the total </span>energy<span> of an </span>isolated system<span> is constant; energy can be transformed from one form to another, but cannot be created or destroyed. so assuming no heat losses then heat removed is also 333 J</span>
Explanation:
Answer
( 58.3 mL ) (
0.789 g
1 mL
) (
1 mole
46 g
) = 1 mole C2H5OH
( 500 mL H2O ) (
1 g
1 mL
) (
1 mole
18 g
) = 27.8 mole H2O
The total moles = 1 mole C2H5OH + 27.8 mole H2O = 28.8 moles
The mole fraction =
moles C2H5OH
total moles
=
1 mole C2H5OH
28.8 total moles
= 0.035
The mole percent would be 3.5%.
What is the weight fraction?
Answer
( 58.3 mL ) (
0.789 g
1 mL
) = 46 g C2H5OH
( 500 mL H2O ) (
1 g
1 mL
) = 500 g H2O
The total mass = 46 g C2H5OH + 500 g H2O = 546 g
The mass fraction =
mass C2H5OH
total mass
=
46 g C2H5OH
546 total grams
= 0.084
The mass percent would be 8.4%.
What is the molarity?
Answer
The molarity =
moles C2H5OH
L of solution
=
1 mole C2H5OH
.5583 L
= 1.79 M
What is the molality?
Answer
The molality =
moles C2H5OH
kg of solvent
=
1 mole C2H5OH
0.5 kg H2O
= 2
Answer:
The time required for sucrose transportation through the tube is 8.4319 sec.
Explanation:
Given:
L = 0.025 m
A = 6.5×10^-4 m^2
D = 5×10^-10 m^2/s
ΔC = 5.2 x 10^-3 kg/m^3
m = 5.7×10^-13 kg
Solution:
t = m×L / D×A×ΔC
t = (5.7×10^-13) × (0.025) / (5×10^-10)×(6.5×10^-4)×(5.2 x 10^-3)
t = 8.4319 sec.
Producing nuclear energy is far more environmentally friendly than burning fossil fuels. That is the main benefit.
The main risk is radiation. If the nuclear waste is not properly disposed of, it can leak radiation into the environment. Fortunately, this is not an issue since there are ways to deal with it. There is also the risk of a disaster like the Chernobyl incident, however that was mostly due to faulty reactor construction. However, reactors today are built to avoid such issues.