Answer:
a = 4.9(1 - sinθ - 0.4cosθ)
Explanation:
Really not possible without a complete setup.
I will ASSUME that this an Atwood machine with two masses (m) connected by an ideal rope passing over an ideal pulley. One mass hangs freely and the other is on a slope of angle θ to the horizontal with coefficient of friction μ. Gravity is g
F = ma
mg - mgsinθ - μmgcosθ = (m + m)a
mg(1 - sinθ - μcosθ) = 2ma
½g(1 - sinθ - μcosθ) = a
maximum acceleration is about 2.94 m/s² when θ = 0
acceleration will be zero when θ is greater than about 46.4°
Answer:
We can also prove the conservation of mechanical energy of a freely falling body by the work-energy theorem, which states that change in kinetic energy of a body is equal to work done on it. i.e. W=ΔK. And ΔE=ΔK+ΔU. Hence the mechanical energy of the body is conserved
Explanation:
Answer:
r₂ = 0.316 m
Explanation:
The sound level is expressed in decibels, therefore let's find the intensity for the new location
β = 10 log
let's write this expression for our case
β₁ = 10 log \frac{I_1}{I_o}
β₂ = 10 log \frac{I_2}{I_o}
β₂ -β₁ = 10 (
)
β₂ - β₁ = 10
log \frac{I_2}{I_1} =
= 3
= 10³
I₂ = 10³ I₁
having the relationship between the intensities, we can use the definition of intensity which is the power per unit area
I = P / A
P = I A
the area is of a sphere
A = 4π r²
the power of the sound does not change, so we can write it for the two points
P = I₁ A₁ = I₂ A₂
I₁ r₁² = I₂ r₂²
we substitute the ratio of intensities
I₁ r₁² = (10³ I₁ ) r₂²
r₁² = 10³ r₂²
r₂ = r₁ / √10³
we calculate
r₂ =
r₂ = 0.316 m
20N•m or 20J. Work is equal to force•distance, and 5N•4m is 20N•m, or J
The original width was 94.71 cm
<span>The area decreased 33.1% </span>
<span>The equation for the final size is </span>
<span>2X^2 = 1.2 m^2 </span>
<span>X^2 - 0.6 m^2 </span>
<span>X^2 = 10000 * .6 cm </span>
<span>X = 77.46 cm (this is the width) </span>
<span>The length is 2 * 77.46 = 154.92 cm </span>
<span>The original length was 154.92 + 34.5 = 189.42 cm </span>
<span>The original width was 189.42 / 2 = 94.71 cm </span>
<span>The original area was 94.71 * 189.92 = 17939.9 cm^2 </span>
<span>The new area is 79.46 * 154.92 = 12000.1 cm^2 </span>
<span>The difference between the original and current area is 17939.9 - 12000.1 = 5939.86 cm^2 </span>
<span>The percentage the area decreased is 5939.86 ' 17939.9 = 33.1%</span>