Answer:
According to Kepler's 3rd law.
It states that the orbital period, T is related to the distance, r as:
T²
= 4
π²r³
/G M
where G is the universal gravitational constant = 6.673 × 10⁻¹¹ Nm²/kg²
Rearranging for M should give Jupiter's mass.
M =
4
π²r³/GT²
T= 1.77 days × 24 h/day × 60 min/h × 60 s/min = 1.53 × 10⁵ s
r = 4.22x10⁸ m
M = 4π² ((4.22 × 10⁸ m)³/(6.673 × 10⁻¹¹ Nm²/kg² x (1.53 × 10⁵ s)²)
M = 1.90 × 10²⁷kg
The mass of Jupiter is 1.90 × 10²⁷kg.
1.90 × 10²⁷kg
T= 7.16 days × 24 h/day × 60 min/h × 60 s/min = 6.19 × 10⁵s
r = 1.07x10⁹ m
M = 4π² ((1.07 × 10⁹ m)³/(6.673 × 10⁻¹¹ Nm²/kg² x (6.19 × 10⁵ s)²)
M = 1.90 × 10¹⁷kg
The mass of Jupiter is 1.90 × 10¹⁷kg.
THE RESULTS TO PART A and B ARE NOT CONSISTENT. The reason is because of the difference in radius of each satellites from Jupiter. i.e the farther away the moons, the smaller they become in space and the more the number of days to complete an orbit.
Answer:
The force of the ball on the bat is same as the force of the bat on the ball.
Explanation:
A bat hits the ball and the ball moves to the out filed.
According to the Newton's third law, for every action there is an equal and opposite reaction.
The action and the reaction forces acts on the two different bodies but the magnitude of the force is same.
As the ball is hitted by the bat, the bat exerts the force on the ball and the same force is exerted on the bat by the ball according to the Newton's third law.
So, the force of the ball on the bat is same as the force of the bat on the ball but the direction of force is opposite.
Answer:
The law of conservation of matter says that in chemical reactions, the total mass of the products must equal the total mass of the reactants.
Another reason why cats hate water is attributed to their history. There is not much in a cat's background to recommend them for successful interactions with bodies of water, be it small or big. Cat's ancestors lived in dry arid places which means rivers or oceans weren't obstacles they had to face.
Hope this helps:)