The frequency of a wave is just the reciprocal of the period.For this one . . .
Frequency = 1/(period) = 1/(5 sec) = 0.2 per sec (0.2 Hz) .
Answer:
(2)


Explanation:
<u>a)Kinematics equation for the first ball:</u>


initial position is the building height
The ball reaches the ground, y=0, at t=t1:

(1)
Kinematics equation for the second ball:


initial position is the building height
the ball is dropped
The ball reaches the ground, y=0, at t=t2:

(2)
the second ball is dropped a time of 1.03s later than the first ball:
t2=t1-1.03 (3)
We solve the equations (1) (2) (3):






vo=8.9m/s

t2=t1-1.03 (3)
t2=3.29sg
(2)
b)
t1 must : t1>1.03 and t1>0
limit case: t1>1.03:





limit case: t1>0:




Answer:
it is because it is quieter at night than in the daytime. Therefore it is easy to hear the sound far away. However, it is only one of the reasons. Actually, sound transmits farther at night may be related to refraction of sound waves! First, sound is the vibration of air, and it is a kind of wave motion.
Explanation:
The acceleration and velocity of the plane is 78.57 m/s² and 157.14 m/s respectively
To calculate the acceleration of the plane, we use the formula below.
<h3>Formula:</h3>
- a = F/m..................... Equation 1
Where:
- a = Acceleration of the plane
- F = Force applied to the plane
- m = mass of the plane.
From the question,
Given:
Substitute these values into equation 1
- a = 550000/7000
- a = 78.57 m/s²
To calculate the velocity, we use the formula below.
- v = u+at............. Equation 2
Where:
- v = Final velocity
- u = initial velocity
- a = acceleration
- t = time.
From the question,
Given:
- u = 0 m/s
- a = 78.57 m/s
- t = 2.0 seconds
Substitute these values into equation 2
Hence, The acceleration and velocity of the plane is 78.57 m/s² and 157.14 m/s respectively.
Learn more about acceleration here: brainly.com/question/460763
The answer would be permeable i know this because i just took the test on apex.