1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bingel [31]
3 years ago
13

Does an object travel farther on a smooth or slippery surface or on a rough surface? Why?

Physics
1 answer:
Vitek1552 [10]3 years ago
8 0

Answer:

There is much more friction on the rough surface than there is on the smooth surface.

Explanation:

You might be interested in
What is the name(s) of your instructor(s)?
Ganezh [65]

Answer:

they name if my instructor is mrs. Rodriguez

7 0
3 years ago
Consider two insulating balls with evenly distributed equal and opposite charges on their surfaces, held with a certain distance
siniylev [52]

Answer:

interest point:

1) Point on the left side

2) Point within the radius r₁ of the first sphere

3) Point between the two spheres

4) point within the radius r₂ of the second sphere

5) Right side point

Explanation:

In this case, the total electric field is the vector sum of the electric fields of each sphere, to simplify the calculation on the line that joins the two spheres

       

We will call the sphere on the left 1 and it has a positive charge Q with radius r1, the sphere on the right is called 2 with charge -Q with radius r2. The total field is

          E_ {total} = E₁ + E₂

          E_{ total} = k \frac{Q}{x_1^2} + k  \frac{Q}{x_2^2}

the bold indicate vectors, where x₁ and x₂ are the distances from the center of each sphere. If the distance that separates the two spheres is d

          x₂ = x₁ -d

          E total = k  \frac{Q}{x_1^2} - k \frac{Q}{(x_1 - d)^2}

Let's analyze the field for various points of interest.

1) Point on the left side

in this case

            E_ {total} = k Q \ ( \frac{1}{x_1^2} - \frac{1}{(x_1 +d)2} )

            E_ {total} = k \frac{Q}{x_1^2}   ( 1 - \frac{1}{(1 + \frac{d}{x_1} )^2 } )

We have several interesting possibilities:

* We can see that as the point is further away the field is more similar to the field created by two point charges

* there is a point where the field is zero

            E_ {total} = 0

             x₁² =  (x₁ + d)²

           

2) Point within the radius r₁ of the first sphere.

In this case, according to Gauus' law, the charge is on the surface of the sphere at the point, there is no charge inside so this sphere has no electric field on its inner point

              E_ {total} = -k \frac{Q}{x_2^2} = -k \frac{Q}{((d-x_1)^2}

this expression holds for the points located at

                  -r₁ <x₁ <r₁

3) Point between the two spheres

                E_ {total} = k \frac{Q}{x_1^2} + k \frac{Q}{(d+x_1)^2}

This champ is always different from zero

4) point within the radius r₂ of the second sphere, as there is no charge inside, only the first sphere contributes

                  E_ {total} = + k \frac{Q}{(d-x_1)^2}+ k Q / (d-x1) 2

point range

                  -r₂ <x₂ <r₂

             

5) Right side point

            E_ {total} = k \frac{Q}{(x_2-d)^2} - k \frac{Q}{x_2^2}

             E_ {total} = - k \frac{Q}{x_2^2} ( 1- \frac{1}{(1- \frac{d}{x_2})^2 } )- k Q / x22 (1- 1 / (x1 + d) 2)

we have two possibilities

* as the distance increases the field looks more like the field created by two point charges

* there is a point where the field is zero

8 0
2 years ago
A 2.0-kg projectile is fired with initial velocity components v0x = 30 m/s and v0y = 40 m/s from a point on the Earth's surface.
EleoNora [17]

(a) The kinetic energy of the projectile when it reaches the highest point in its trajectory is 900 J.

(b) The work done  in firing the projectile is 2,500 J.

<h3>Kinetic energy of the projectile at maximum height</h3>

The kinetic energy of the projectile when it reaches the highest point in its trajectory is calculated as follows;

K.E = ¹/₂mv₀ₓ²

where;

  • m is mass of the projectile
  • v₀ₓ is the initial horizontal component of the velocity at maximum height

<u>Note:</u> At maximum height the final vertical velocity is zero and the final horizontal velocity is equal to the initial horizontal velocity.

K.E = (0.5)(2)(30²)

K.E = 900 J

<h3>Work done in firing the projectile</h3>

Based on the principle of conservation of energy, the work done in firing the projectile is equal to the initial kinetic energy of the projectile.

W = K.E(i) = ¹/₂mv²

where;

  • v is the resultant velocity

v = √(30² + 40²)

v = 50 m/s

W = (0.5)(2)(50²)

W = 2,500 J

Thus, the kinetic energy of the projectile when it reaches the highest point in its trajectory is 900 J.

The work done  in firing the projectile is 2,500 J.

Learn more about kinetic energy here: brainly.com/question/25959744

#SPJ1

5 0
2 years ago
A plane designed for vertical takeoff has a mass of 8.0 × 10³ kg. Find the net work done by all forces on the plane as it accele
artcher [175]

Answer:

<em>the net work done after starting from rest is =  2.4 × 10⁵ J</em>

Explanation:

Work: Work can be defined as the product of force and distance. The fundamental unit of work is Joules (J),  The unit of Energy is Joules (J), as such Energy and work are interchangeable during calculation, This is illustrated below

E = W = 1/2mv².......................... Equation 1

Where m = mass of the plane, v = velocity of the plane, E = Energy, W = work done.

v² = u² + 2as ................................. Equation 2.

Where v = final velocity of the plane, u = initial velocity of the plane, a = acceleration of the plane, distance of the plane.

<em>Given: a = 1.0 m/s², s = 30 m, u = 0 m/s (at rest)</em>

<em>Substituting these values into equation 2</em>

<em>v² = 0² +2×1×30</em>

<em>v² = 60</em>

<em>v = √60</em>

<em>v = 7.75 m/s</em>

Also given: m = 8.0 × 10³ kg, and v = 7.75 m/s

<em>Substituting these values into equation 1,</em>

<em>W = 1/2(8.0×10³)(7.75)²</em>

<em>W = (4.0×10³)(60)</em>

W = 240 × 10³ J

<em>W = 2.4 × 10⁵ J</em>

<em>Therefore the net work done after starting from rest is =  2.4 × 10⁵ J</em>

4 0
3 years ago
the resistor of values 6 ohm,6 ohm are connected in series and 12 ohm are connected in parallel. the equivalent resistance of th
andrezito [222]

Answer:

The equivalent or total resistance of the circuit is 6

Explanation:

6 &6 are in series

6+6=r

r= 12

1/Rtotal= 1/12+1/2

1/Rt=2/12=1/6

Rt=6

6 0
3 years ago
Other questions:
  • On an icy road, a 1100 kg car moving at 55 km/h strikes a 480 kg truck moving in the same direction at 37 km/h . The pair is soo
    11·2 answers
  • The Earth-centered model of the Solar System contains____planets.
    12·2 answers
  • Identical 50 μC charges are fixed on an x axis at x = ±3.0 m. A particle of charge q = -15 μC is then released from rest at a po
    9·1 answer
  • What is pmolecule and hmolecules
    6·1 answer
  • A police officer uses a radar gun to determine the speed of a car. A specialized radar gun uses ultraviolet light to determine s
    15·1 answer
  • When hydrogen reacts with oxygen, hydrogen loses electrons. Which term
    7·2 answers
  • Hi im in class and i need help!
    6·2 answers
  • Which occurrence would lead you to conclude that lights are connected in a series circuit?
    10·1 answer
  • If a student weighs 100 pounds on Earth, how much more or less would she weigh on Pluto than Mars?
    6·1 answer
  • Do the data support or refute the hypothesis? be sure to explain your answer and include how the variables changed in the experi
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!