1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesya [120]
3 years ago
11

driving down the highway , you find yourself behind a heavily loaded tomato truck. you follow close behind the truck keeping the

same speed. suddenly a tomato falls from the back of the struck. will the tomato hit your car or land on the road assuming you continue moving the same speed and direction.
Physics
1 answer:
prohojiy [21]3 years ago
4 0

Answer:

The tomato won't hit the car

Explanation:

According to the statement, the car moves at constant speed behind the truck fully loaded with tomatoes, and in the same direction. When a tomato falls from the top of the truck, it should not hit the car as the tomato falls due to the force of gravity, while horizontally has the same speed and in the same direction as the truck.  So we assume that the tomato will fall to the road without touching the car.

Have a nice day!

You might be interested in
Please help, thanks!
statuscvo [17]
Because it demonstrates the relationship between a body and the forces acting upon it, and its motion in response to those forces. [Hope that helps]
7 0
3 years ago
A projectile is shot directly away from Earth's surface. Neglect the rotation of the Earth. What multiple of Earth's radius RE g
7nadin3 [17]

Answer:

(a) r = 1.062·R_E = \frac{531}{500} R_E

(b) r = \frac{33}{25} R_E

(c) Zero

Explanation:

Here we have escape velocity v_e given by

v_e =\sqrt{\frac{2GM}{R_E} } and the maximum height given by

\frac{1}{2} v^2-\frac{GM}{R_E} = -\frac{GM}{r}

Therefore, when the initial speed is 0.241v_e we have

v = 0.241\times \sqrt{\frac{2GM}{R_E} } so that;

v² = 0.058081\times {\frac{2GM}{R_E} }

v² = {\frac{0.116162\times GM}{R_E} }

\frac{1}{2} v^2-\frac{GM}{R_E} = -\frac{GM}{r} is then

\frac{1}{2} {\frac{0.116162\times GM}{R_E} }-\frac{GM}{R_E} = -\frac{GM}{r}

Which gives

-\frac{0.941919}{R_E} = -\frac{1}{r} or

r = 1.062·R_E

(b) Here we have

K_i = 0.241\times \frac{1}{2} \times m \times v_e^2 = 0.241\times \frac{1}{2} \times m  \times \frac{2GM}{R_E} = \frac{0.241mGM}{R_E}

Therefore we put  \frac{0.241GM}{R_E} in the maximum height equation to get

\frac{0.241}{R_E} -\frac{1}{R_E} =-\frac{1}{r}

From which we get

r = 1.32·R_E

(c) The we have the least initial mechanical energy, ME given by

ME = KE - PE

Where the KE = PE required to leave the earth we have

ME = KE - KE = 0

The least initial mechanical energy to leave the earth is zero.

3 0
3 years ago
Read 2 more answers
A ball falls from the top of a building. As it falls, its speed increases. Which type of energy is the ball gaining as it falls?
Elina [12.6K]
<h2>Hello!</h2>

The answer is: B. Kinetic energy

<h2>Why?</h2>

Since the ball is falling, speed increases because the gravity acceleration is acting. When speed increases, the kinetic energy increases too, so the ball is gaining kinetic energy.

The gravity acceleration is equal to 9.81\frac{m}{s^{2}}, it means that when falling, the ball will increase it's speed 9.81m every second.

We can calculate the kinetic energy by using the following formula:

KE=\frac{1}{2}*m*v^{2}

Where:

m=mass\\v=velocity

Have a nice day!

<h2 />
5 0
3 years ago
Which of the following is NOT true regarding the far side of the moon:
frutty [35]
It contains no large maria
8 0
3 years ago
the pressure difference between an oil and water pipe is measured by double fluid manometer as shown in figure below for the giv
Ahat [919]
The answer above me is correct
8 0
3 years ago
Other questions:
  • A wire 1 mm in diameter is connected to one end of a wire of the same material 2 mm in diameter of twice the length. A voltage s
    10·1 answer
  • The value of efficiency is never 100% or more in practice. why​
    15·1 answer
  • Weight, height, and temperature are all types of _____.
    8·1 answer
  • Runner A is initially 5.7 km west of a flagpole and is running with a constant velocity of 8.8 km/h due east. Runner B is initia
    12·1 answer
  • How to Identify Newtons Three Laws in my Own Words?
    15·1 answer
  • Jan ran 4 miles north in 28 minutes. What was Jan's average velocity?
    8·1 answer
  • Which term describes an educated guess about the outcome of an
    11·2 answers
  • The diagram below shows the relative positions of Earth and the Sun at a certain time of the year. Based on the diagram, which s
    5·1 answer
  • What are the characteristics of a nebulae? (Select all that apply.)
    10·1 answer
  • PLEASE HELP MEE I REALLY NEED IT
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!