The question is asking us to find the dimensions of the rectangle, which would be the length and width. So, to find this, we must first state our givens, as it is Geometry.
Given: Length of rectangle = 59 + twice the width, diagonal = 2 inches longer than the width
Let's first translate all our givens to numbers. We'll start off by assigning variables that are easy to work with (x, y and z).
x = width
y = length
z = diagonal
Now that we have done that, we need to translate all our givens into numbers. Here is how that would look like:
y = 2x + 59 ←59 plus twice the width (x)
z = y + 2 ←Diagonal = 2 inches more than width
If we draw a diagram, we can see that the diagonal, length, and width all create a right triangle, which means that we can use the Pythagorean Theorem. By using right triangle postulates and theorems, we can deduce that the diagonal is the hypotenuse. Here is what our setup looks like:
x² + y² = z²
<em />Now, all we need to do is plug in the expressions we created for y and z:
x² + (2x + 59)² = [2 + (2x + 59)²]
When we solve for x, we get x = 20. Now, we just plug the x value back into the y equation to get 99. Therefore, the length equals 99 inches and the width equals 20 inches. Hope this helps and have a great day!
Answer: I would say the third one
Step-by-step explanation: I hope this helps if it is wrong i am so sorry I hope you have a great day of night stay safe :)
Answer:
9.
Step-by-step explanation:
The highest power is 3*3 = 9, so it's 9.
Answer:
1627190
Step-by-step explanation:
(see attached for reference)
Given the number 1627187, we can see that the number in the tens place is the number 8.
How we round this depends on the number immediately to the right of this number. (i.e the digit in the ones place)
Case 1: If the digit in the ones place is less less than 5, then the number in the tens place remains the same and replace all the digits to its right with zeros
Case 2: If the digit in the ones places is 5 or greater, then we increase the digit in the tens place and replace all the digits to its right with zeros.
In our case, the digit in the ones places is 7, this greater than 5, hence according to Case 2 above, we increase the digit in the tens place by one (from 8 to 9) and replace all the digits to its right by zeros giving us:
1627190
Answer:
Ted
Step-by-step explanation: