Answer:
The elastic potential energy stored in the stretched rubber band changes to kinetic energy.
Explanation:
Joshua hooks a rubber band between his thumb and forefinger. He moves his fingers apart, stretching the rubber band---- Here potential Energy is stored which is an energy that the rubber band has because of its position and it's potential to be converted into kinetic energy.
With a quick, sudden motion, he bends his thumb forward so that the rubber band slips off----The elastic potential energy stored in the stretched rubber band will change to kinetic energy, which is the Energy in Motion and work needed to accelerate the rubber band from rest to its stated or new position.
Answer: Heat of vaporization is 41094 Joules
Explanation:
The vapor pressure is determined by Clausius Clapeyron equation:

where,
= initial pressure at 429 K = 760 torr
= final pressure at 415 K = 515 torr
= enthalpy of vaporisation = ?
R = gas constant = 8.314 J/mole.K
= initial temperature = 429 K
= final temperature = 515 K
Now put all the given values in this formula, we get
![\log (\frac{515}{760}=\frac{\Delta H}{2.303\times 8.314J/mole.K}[\frac{1}{429K}-\frac{1}{415K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7B515%7D%7B760%7D%3D%5Cfrac%7B%5CDelta%20H%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B429K%7D-%5Cfrac%7B1%7D%7B415K%7D%5D)

Thus the heat of vaporization is 41094 Joules
Answer:
24.1g of chlorine & 15.6g of sodium
Explanation:
according to the law of conservation of mass
Na+Cl=NaCl only
Answer:
127°C
Explanation:
This excersise can be solved, with the Charles Gay Lussac law, where the pressure of the gas is modified according to absolute T°.
We convert our value to K → -73°C + 273 = 200 K
The moles are the same, and the volume is also the same:
P₁ / T₁ = P₂ / T₂
But the pressure is doubled so: P₁ / T₁ = 2P₁ / T₂
P₁ / 200K = 2P₁ / T₂
1 /2OOK = (2P₁ / T₂) / P₁
See how's P₁ term is cancelled.
200K⁻¹ = 2/ T₂
T₂ = 2 / 200K⁻¹ → 400K
We convert the T° to C → 400 K - 273 = 127°C