<span>1s2, 2s2, 2p6, 3s2, 3p6, 3d5</span>
Answer:
The pressure in that cylinder = 1.12atm
Explanation:
We use general gas law to calculate it. General gas law is gotten by combining Boyle's law, Charles' law and Avogadro's law. Thus
P = nRT/V
Where n = number of moles
R = the gas constant
T is the Temperature, V is the volume and P is the pressure.
Given: T = 319K, V = 24L, R = 0.0821 L.atm/K.mol
The first step is to find n using
n = mass of O2/molar mass of O2
=32.7/32
=1.0219
Now, using P =nRT/V
P = 1.0219 ×0.0821×319÷24
Therefore P = 1.12atm
Time Zones were adopted to fix the time. Without the time zone, you will never know what time it is
Answer:
through natural selection
Explanation:
Natural selection is the driving mechanism of the evolution of species. Organisms can survive more in an environment if they are capable to adapt the changing environmental conditions. After surviving they are also able to pass their modified trait into their future generations (evolution).
Helpful variations accumulate through natural selection, as the organisms that are better adapted to their environment reproduce offspring with the same variations.
When changing states, only the intermolecular forces are considered, which, in water's case are hydrogen bonds. In order to go from solid to liquid to gas, the hydrogen bonds between the water molecules must be weakened to a certain degree that allows the molecules to spread further apart in liquids, and must be broken altogether to separate the molecules in order to turn it into gas.
Therefore, the answer is d.
The reason it is not the covalent bonds within molecules (despite the fact that it will turn water into a gas, it’s not water vapour, but hydrogen and oxygen gas) is that when bonds within a molecule are broken, this is called decomposition and it is a CHEMICAL change. Changing states is only a PHYSICAL change.
It is not ionic because water has covalent bonds.
Hydrogen bonds can only occur BETWEEN molecules (intermolecular forces).
Covalent bonds can only occur WITHIN molecules (intramolecular).