Answer:
512.5 mJ
Explanation:
Let the two identical charges be q = +35 µC and distance between them be r₁ = 46 cm. A charge q' = +0.50 µC located mid-point between them is at r₂ = 46 cm/2 = 23 cm = 0.23 m.
The electric potential at this point due to the two charges q is thus
V = kq/r₂ + kq/r₂
= 2kq/r₂
= 2 × 9 × 10⁹ Nm²/C² × 35 × 10⁻⁶ C/0.23 m
= 630/0.23 × 10³ V
= 2739.13 × 10³ V
= 2.739 MV
When the charge q' is moved 12 cm closer to either of the two charges, its distance from each charge is now r₃ = r₂ + 12 cm = 23 cm + 12 = 35 cm = 0.35 m and r₄ = r₂ - 12 cm = 23 cm - 12 cm = 11 cm = 0.11 cm.
So, the new electric potential at this point is
V' = kq/r₃ + kq/r₄
= kq(1/r₃ + 1/r₄)
= 9 × 10⁹ Nm²/C² × 35 × 10⁻⁶ C(1/0.35 m + 1/0.11 m)
= 315 × 10³(2.857 + 9.091) V
= 315 × 10³ (11.948) V
= 3763.62 × 10³ V
= 3.764 MV
Now, the work done in moving the charge q' to the point 12 cm from either charge is
W = q'(V' - V)
= 0.5 × 10⁻⁶ C(3.764 MV - 2.739 MV)
= 0.5 × 10⁻⁶ C(1.025 × 10⁶) V
= 0.5125 J
= 512.5 mJ
Answer:
Like all mammals (including whales and dolphins) narwhals need oxygen. ... Fish use their gills to extract oxygen from the water. But narwhals, like us, use their lungs to breathe.
Explanation:
When a car<span> rounds a corner at a constant </span>speed<span>, its acceleration is zero. Suppose you are in a </span>car<span> that is going around a curve. The speedometer reads a constant 30 miles per hour. ... </span>Describe the speed<span> of the object from 4-6 seconds using the distance vs. time graph.</span>
A step-down transformer has more loops in : A. Primary coil
Primary coil refers to the coil to which alternating voltage is supplied. It's usually connected to the AC supply
hope this helps