Answer:
Measure the brightness of a star through two filters and compare the ratio of red to blue light. Compare to the spectra of computer models of stellar spectra of different temperature and develop an accurate color-temperature relation.
Not really but I need points lol
This problem here is an example of inelastic collision where kinetic energy is not conserved but momentum is. We calculate as follows:
m1v1 + m2v2 = (m1 + m2)v3
v3 = m1v1 + m2v2 / m1 + m2
v3 = (30.2)(1000) + (5000)(0) / (30.2 + 5000)
v3 = 6.00 m/s
Answer:
a. 960 W b. One 1 kW room heater
Explanation:
a. The rate of heat conduction P = kA(T₂ - T₁)/d where k = 2 × 0.040 W/m-K = 0.080 W/m-K since the thermal conductivity of glass wool is 0.040 W/m-K and that of the material is twice the thermal conductivity of glass wool, A = area of walls = 120 m², T₁ = outside surface temperature = 5.0 °C, T₂ = inside surface temperature = 18.0 °C and d = thickness of wall = 13.0 cm = 0.13 m
P = kA(T₂ - T₁)/d
= 0.080 W/m-K × 120 m²(18.0 °C - 5.0 °C)/0.13 m
= 9.6 Wm/K × 13 K/0.13 m
= 124.8 Wm/0.13 m
= 960 W
b. The number of 1 kW room heater required will be
n = rate of heat conduction/power of one room heater = 960 W/ 1 kW = 960 W/1000 W = 0.96 ≅ 1
So we need only one 1 kW room heater.