The ideal gas constant is a proportionality constant that is added to the ideal gas law to account for pressure (P), volume (V), moles of gas (n), and temperature (T) (R). R, the global gas constant, is 8.314 J/K-1 mol-1.
According to the Ideal Gas Law, a gas's pressure, volume, and temperature may all be compared based on its density or mole value.
The Ideal Gas Law has two fundamental formulas.
PV = nRT, PM = dRT.
P = Atmospheric Pressure
V = Liters of Volume
n = Present Gas Mole Number
R = 0.0821atmLmoL K, the Ideal Gas Law Constant.
T = Kelvin-degree temperature
M stands for Molar Mass of the Gas in grams Mol d for Gas Density in gL.
Learn more about Ideal gas law here-
brainly.com/question/28257995
#SPJ4
When the mixture (the sugar and water) is frozen, it separates. The water molecules get closer together, separating and pushing the sugar crystals to the top.<span />
Answer:
Spring constant of the spring will be equal to 9.255 N /m
Explanation:
We have given mass m = 0.683 kg
Time taken to complete one oscillation is given T = 1.41 sec
We have to find the spring constant of the spring
From spring mass system time period is equal to
, here m is mass and K is spring constant
So 

Squaring both side


So spring constant of the spring will be equal to 9.255 N /m
D I think .... don’t be mad if I’m wrong
It’s because flourecent lights operate at higher temperatures than incadecent lights.