Well according to Newton’s first law of motion, a body will remain in the state of rest or linear motion provided that an *external force* has been applied. So no, a force doesn’t need to keep a body to remain in linear motion, because F=ma, during uniform linear motion velocity is constant, hence acceleration is zero, so F=0
Answer:
Fnet = F√2
Fnet = kq²/r² √2
Explanation:
A exerts a force F on B, and C exerts an equal force F on B perpendicular to that. The net force can be found with Pythagorean theorem:
Fnet = √(F² + F²)
Fnet = F√2
The force between two charges particles is:
F = k q₁ q₂ / r²
where
k is Coulomb's constant, q₁ and q₂ are the charges, and r is the distance between the charges.
If we say the charge of each particle is q, then:
F = kq²/r²
Substituting:
Fnet = kq²/r² √2
"The process used by scientific investigations is the scientific method. This involves making an observation, stating a question, formulating a hypothesis, conducting an experiment and analyzing the results to form a conclusion. "
I would most likely go with B. but im not 100% sure
Answer:
P = 5880 J
Explanation:
Given that,
The mass of the block, m = 30 kg
The block is sitting at a height of 20 m.
The block will have gravitational potential energy. The formula for gravitational potential energy is given by :

So, the required potential energy is equal to 5880 J.