1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
777dan777 [17]
2 years ago
9

My Exams are coming.so, please tell me some ways to score good marks?​

Physics
2 answers:
devlian [24]2 years ago
8 0

Explanation:

Study hard focus on your study don't use any device only focus on your study

<h2>Mark me as a brainliest </h2>
Citrus2011 [14]2 years ago
5 0

Instead of asking this question go and study

You might be interested in
A soft tennis ball is dropped onto a hard floor from a height of 1.50 m and rebounds to a height of 1.10 m. (a) Calculate its ve
Gemiola [76]

Answer:

(a)   v = 5.42m/s

(b)   vo = 4.64m/s

(c)   a = 2874.28m/s^2

(d)   Δy = 5.11*10^-3m

Explanation:

(a) The velocity of the ball before it hits the floor is given by:

v=\sqrt{2gh}        (1)

g: gravitational acceleration = 9.8m/s^2

h: height where the ball falls down = 1.50m

v=\sqrt{2(9.8m/s^2)(1.50m)}=5.42\frac{m}{s}

The speed of the ball is 5.42m/s

(b) To calculate the velocity of the ball, after it leaves the floor, you use the information of the maximum height reached by the ball after it leaves the floor.

You use the following formula:

h_{max}=\frac{v_o^2}{2g}       (2)

vo: velocity of the ball where it starts its motion upward

You solve for vo and replace the values of the parameters:

v_o=\sqrt{2gh_{max}}=\sqrt{2(9.8m/s^2)(1.10m)}=4.64\frac{m}{s}

The velocity of the ball is 4.64m/s

(c) The acceleration is given by:

a=\frac{\Delta v}{\Delta t}=\frac{v_o-v}{3.50*10^{-3}s}=\frac{4.64m/s-(-5.42m)/s}{3.50*10^{-3}s}=2874.285\frac{m}{s^2}

a=\frac{\Delta v}{\Delta t}=\frac{v_o-v}{3.50*10^{-3}s}=\frac{4.64m/s-5.42m/s}{3.50*10^{-3}s}=-222.85\frac{m}{s^2}

The acceleration of the ball is 2874.28/s^2

(d) The compression of the ball is:

\Deta y=\frac{v^2}{2(a)}=\frac{(5.42m/s)^2}{2(2874.28m/s^2)}=5.11*10^{-3}m

THe compression of the ball when it strikes the floor is 5.11*10^-3m

4 0
3 years ago
A physics major is cooking breakfast when he notices that the frictional force between the steel spatula and the Oiled Steel fry
Alinara [238K]

Answer:

N  = 6.67 N

Explanation:

The frictional or frictional force is a force that arises from the contact of two bodies and opposes movement.

The friction is due to imperfections and roughness, mainly microscopic, that exist on the surfaces of the bodies. Upon contact, these roughnesses engage with each other making movement difficult. To minimize the effect of friction, either the surfaces are polished or lubricated, since the oil fills the imperfections, preventing them from snagging.

As the frictional force depends on the materials and the force exerted on one another, its magnitude is obtained by the following expression:

f = μ*N    Formula (1)

where:  

f is the friction force  (N)

μ is the coefficient of friction

N is the normal force (N)

Data

f = 0.2 N : frictional force between the steel spatula and the Oiled Steel frying pan

μ = 0.03 :coefficient of kinetic friction between the two materials

Calculating of normal force

We replace data in the formula (1)

f = μ*N  

0.2  = 0.03*N  

N  = 0.2 / 0.03

N  = 6.67 N

5 0
4 years ago
Calculate the charge that flows through the cell in 1 minute. Each filament lamp has a power of 3 W and a resistance of 12 Ω
lapo4ka [179]

Answer:

24 Coulumbs

Explanation:

Given data

time= 1 minute= 6 seconds

P=2 W

R= 12 ohm

We know that

P= I^2R

P/R= I^2

2/12= I^2

I^2= 0.166

I= √0.166

I= 0.4 amps

We know also that

Q= It

substitute

Q= 0.4*60

Q= 24 Columbs

Hence the charge is 24 Coulumbs

5 0
3 years ago
The electric field between two parallel plates is uniform, with magnitude 628 N/C. A proton is held stationary at the positive p
aliina [53]

Answer:

Answer is explained in the explanation section below.

Explanation:

Solution:

Data Given:

Electric Field between two parallel plates = 628 N/C

Separation = 4.22 cm

a) In this part, we are asked to calculate the distance from positive plate at which the electron and proton pass each other.

Solution:

First of all:

Force on proton due to the Electric field between the plates is:

F_{p} = q_{p}E

and, we know that, F = ma

So,

m_{p}a = q_{p}E

a = \frac{q_{p}.E }{m_{p} }      Equation 1

So,

The distance covered by the electron is:

S = ut + 1/2at^{2}

Here, u = 0.

S = 1/2at^{2}

Put equation 1 into the above equation:

S = 1/2 x (\frac{q_{p}.E }{m_{p} }  )t^{2}      Equation 2

So,  

Similarly, the distance covered by electron will be:

(D-S) = 1/2 x (\frac{q_{e}.E }{m_{e} }  )t^{2}    Equation 3

We know that the charge of electron is equal to the charge of proton so,

q_{p} = q_{e} = q

By dividing the equation 2 by equation 3, we get:

\frac{S}{D-S} = \frac{m_{e} }{m_{p} }

Solve the above equation for S,

Sm_{p} = m_{e}D - m_{e}S

So,

S = \frac{m_{e}.D }{(m_{e} + m_{p})  }

Plugging in the values,

As we know the mass of electron is 9.1 x 10^{-31} and the mass of proton is 1.67 x 10^{-27}

S = \frac{9.1 . 10^{-31} . 4.22 }{(9.1 . 10^{-31} + 1.67 . 10^{-27}  }

S = 0.002298 cm (Distance from the positive plate at which the two pass each other)

b) In this part, we to calculate distance for Sodium ion and chloride ion as above.

So,

we already have the equation, we need to put the values in it.

So,

S = \frac{m_{Cl}.D }{(m_{Cl} + m_{Na})  }

As we know the mass of chlorine is 35.5 and of sodium is 23

S = \frac{35.5 . 4.22}{(35.5 + 23)}

S = 2.56 cm

7 0
3 years ago
When a flat slab of transparent material is placed under water, the critical angle for light traveling from the slab into water
Novosadov [1.4K]

Answer:

(a) 40.6 degree

Explanation:

When refraction takes place from slab to water, the critical angle is 60 degree.

Use Snell's law

refractive index of water with respect to slab

\mu _{w}^{s}=\frac{Sin60}{Sin90}

\frac{\mu _{w}}{\mu _{s}}=0.866

\frac{1.33}{\mu _{s}}=0.866

μs = 1.536

Now for slab air interface, the critical angle is C.

\mu _{a}^{s}=\frac{SinC}{Sin90}

\frac{\mu _{a}}{\mu _{s}}=\frac{SinC}{Sin90}

1 / 1.536 = Sin C

C = 40.6 degree

3 0
3 years ago
Other questions:
  • Which one of the following accurately pairs the device with its function?
    6·2 answers
  • What is measurement​
    14·1 answer
  • What is the momentum of a .005kg bumble bee that is traveling at a velocity of 3.0m/s?
    11·1 answer
  • What is the source of the input energy for the cogeneration of energy?
    6·1 answer
  • A spring scale hung from the ceiling stretches by 6.1 cm when a 2.0 kg mass is hung from it. The 2.0 kg mass is removed and repl
    13·1 answer
  • Do this work if someone give correct answer I make her brainliest do this worksheet please
    11·2 answers
  • PLEASE HELP!!!!I IM GIVING BRAINLIEST!! If you answer this correctly ill answer some of your questions you have posted! (30pts)
    14·1 answer
  • Drawing a ray diagram for an object far from convex lens requires how many rays?
    14·1 answer
  • A record player has a velocity of 33.33 RPM. How fast is the record spinning in m/s at a distance of 0.085 m from the center?
    7·2 answers
  • fins the powee of a convex lens which forms a real and inverted image of magnification -1 of an object placed at a distance from
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!