1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotykmax [81]
3 years ago
6

What is shown in the diagram? A). A turbine B). An electromagnet C). A motor D). A generator

Physics
1 answer:
AlexFokin [52]3 years ago
4 0

Answer:

I just answered a question like this. It should be B. An electromagnet :)

Explanation:

You might be interested in
What is kinetic energy?
skad [1K]
Kinetic energy is the energy the makes an object move. 
6 0
3 years ago
Read 2 more answers
Sphere A of mass 0.600 kg is initially moving to the right at 4.00 m/s. sphere B, of mass 1.80 kg is initially to the right of s
anzhelika [568]

A) The velocity of sphere A after the collision is 1.00 m/s to the right

B) The collision is elastic

C) The velocity of sphere C is 2.68 m/s at a direction of -5.2^{\circ}

D) The impulse exerted on C is 4.29 kg m/s at a direction of -5.2^{\circ}

E) The collision is inelastic

F) The velocity of the center of mass of the system is 4.00 m/s to the right

Explanation:

A)

We can solve this part by using the principle of conservation of momentum. The total momentum of the system must be conserved before and after the collision:

p_i = p_f\\m_A u_A + m_B u_B = m_A v_A + m_B v_B

m_A = 0.600 kg is the mass of sphere A

u_A = 4.00 m/s is the initial velocity of the sphere A (taking the right as positive direction)

v_A is the final velocity of sphere A

m_B = 1.80 kg is the mass of sphere B

u_B = 2.00 m/s is the initial velocity of the sphere B

v_B = 3.00 m/s is the final velocity of the sphere B

Solving for vA:

v_A = \frac{m_A u_A + m_B u_B - m_B v_B}{m_A}=\frac{(0.600)(4.00)+(1.80)(2.00)-(1.80)(3.00)}{0.600}=1.00 m/s

The sign is positive, so the direction is to the right.

B)

To verify if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

Before the collision:

K_i = \frac{1}{2}m_A u_A^2 + \frac{1}{2}m_B u_B^2 =\frac{1}{2}(0.600)(4.00)^2 + \frac{1}{2}(1.80)(2.00)^2=8.4 J

After the collision:

K_f = \frac{1}{2}m_A v_A^2 + \frac{1}{2}m_B v_B^2 = \frac{1}{2}(0.600)(1.00)^2 + \frac{1}{2}(1.80)(3.00)^2=8.4 J

The total kinetic energy is conserved: therefore, the collision is elastic.

C)

Now we analyze the collision between sphere B and C. Again, we apply the law of conservation of momentum, but in two dimensions: so, the total momentum must be conserved both on the x- and on the y- direction.

Taking the initial direction of sphere B as positive x-direction, the total momentum before the collision along the x-axis is:

p_x = m_B v_B = (1.80)(3.00)=5.40 kg m/s

While the total momentum along the y-axis is zero:

p_y = 0

We can now write the equations of conservation of momentum along the two directions as follows:

p_x = p'_{Bx} + p'_{Cx}\\0 = p'_{By} + p'_{Cy} (1)

We also know the components of the momentum of B after the collision:

p'_{Bx}=(1.20)(cos 19)=1.13 kg m/s\\p'_{By}=(1.20)(sin 19)=0.39 kg m/s

So substituting into (1), we find the components of the momentum of C after the collision:

p'_{Cx}=p_B - p'_{Bx}=5.40 - 1.13=4.27 kg m/s\\p'_{Cy}=p_C - p'_{Cy}=0-0.39 = -0.39 kg m/s

So the magnitude of the momentum of C is

p'_C = \sqrt{p_{Cx}^2+p_{Cy}^2}=\sqrt{4.27^2+(-0.39)^2}=4.29 kg m/s

Dividing by the mass of C (1.60 kg), we find the magnitude of the velocity:

v_c = \frac{p_C}{m_C}=\frac{4.29}{1.60}=2.68 m/s

And the direction is

\theta=tan^{-1}(\frac{p_y}{p_x})=tan^{-1}(\frac{-0.39}{4.27})=-5.2^{\circ}

D)

The impulse imparted by B to C is equal to the change in momentum of C.

The initial momentum of C is zero, since it was at rest:

p_C = 0

While the final momentum is:

p'_C = 4.29 kg m/s

So the magnitude of the impulse exerted on C is

I=p'_C - p_C = 4.29 - 0 = 4.29 kg m/s

And the direction is the angle between the direction of the final momentum and the direction of the initial momentum: since the initial momentum is zero, the angle is simply equal to the angle of the final momentum, therefore -5.2^{\circ}.

E)

To check if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

The total kinetic energy before the collision is just the kinetic energy of B, since C was at rest:

K_i = \frac{1}{2}m_B u_B^2 = \frac{1}{2}(1.80)(3.00)^2=8.1 J

The total kinetic energy after the collision is the sum of the kinetic energies of B and C:

K_f = \frac{1}{2}m_B v_B^2 + \frac{1}{2}m_C v_C^2 = \frac{1}{2}(1.80)(1.20)^2 + \frac{1}{2}(1.60)(2.68)^2=7.0 J

Since the total kinetic energy is not conserved, the collision is inelastic.

F)

Here we notice that the system is isolated: so there are no external forces acting on the system, and this means the system has no acceleration, according to Newton's second law:

F=Ma

Since F = 0, then a = 0, and so the center of mass of the system moves at constant velocity.

Therefore, the centre of mass after the 2nd collision must be equal to the velocity of the centre of mass before the 1st collision: which is the velocity of the sphere A before the 1st collision (because the other 2 spheres were at rest), so it is simply 4.00 m/s to the right.

Learn more about momentum and collisions:

brainly.com/question/6439920

brainly.com/question/2990238

brainly.com/question/7973509

brainly.com/question/6573742

#LearnwithBrainly

8 0
3 years ago
On average, how many stars would we have to search before we would expect to hear a signal? assume there are 500 billion stars i
Keith_Richards [23]

We would have to search at least 5,000,000,000 (5 billion) stars before we would expect to hear a signal.

To find out the number of stars that we will need to search to find a signal, we need to use the following formula:

  • total of stars/civilizations
  • 500,000,000,000 (500 billion) stars / 100 civilization = 5,000,000,000 (5 billion)

This shows it is expected to find a civilization every 5 billion stars, and therefore it is necessary to search at least 5 billion stars before hearing a signal from any civilization.

Note: This question is incomplete; here is the complete question.

On average, how many stars would we have to search before we would expect to hear a signal? Assume there are 500 billion stars in the galaxy.

Assuming 100 civilizations existed.

Learn more about stars in: brainly.com/question/2166533

7 0
2 years ago
Match each property with the benefit it provides to people on Earth. A. magnetic field filters cancer-causing rays from the sun
vodomira [7]

The correct matching are the following:

  • A. magnetic field: prevents charged particles from the sun from reaching the surface
  • B. ozone: filters cancer-causing rays from the sun
  • C. carbon dioxide: retains heat energy from the sun in the atmosphere
  • D. water in oceans, lakes, rivers and streams: moderates changes in temperature on the surface

The electromagnetic field of the Earth protects us from solar wind by deflecting it. Without it, the charged particles would strip away our ozone, which will lead to the end of life on Earth.

The ozone is a layer in the stratosphere that filters the suns rays. It filters the UV rays by absorbing it. This prevents the UV rays from damaging the surface of the Earth.

Carbon dioxide retains heat in the atmosphere, which creates a greenhouse effect. It is beneficial for us, but because human activity like industrial activities emit so much carbon in the atmosphere that it ends up being harmful.

Bodies of water found on Earth regulate the temperature of the Earth through ocean currents. It brings in both cold and warm air to land which also affect precipitation.

Long explanation, I know, but maybe this will help you out in the long run. Good Luck!

3 0
3 years ago
Read 2 more answers
John is hiking and notices a small stream of water flowing down the side of the mountain. What part of the water cycle is John o
Alexus [3.1K]

Answer: Runofff

Explanation: because it said that it is going down the side of the mountain

3 0
2 years ago
Other questions:
  • What is the largest tsunami ever recorded
    6·1 answer
  • The angular velocity of the disk is defined by ω = ( 5 t 2 + 2 ) r a d / s , where t is in seconds. Determine the magnitudes of
    7·1 answer
  • A bird flies in the xy-plane with a velocity vector givenby v = (α-βt2)i + γtj with α=2.4m/s,β=1.6m/s3 and γ=4m/s2 . Thepositive
    6·1 answer
  • A scientist has two containers. Inside each container, there is a blue liquid. The liquids are substances. What can the scientis
    8·1 answer
  • Which action will cause the induced current to decrease or remain constant?
    6·1 answer
  • Which of the following is not a galilean moon?
    9·2 answers
  • If you had only one match, and entered a dark room containing an oil lamp, some newspaper, and some kindling wood, which would y
    6·2 answers
  • Which material is a composite? A. gold B.silicon C.polycarbonate D.aluminum
    10·1 answer
  • Plz help!! This is timed!!!!
    8·1 answer
  • Suppose that your data shows that saturn orbits every 29. 5 years. To the nearest hundredth of an au, how far is saturn from the
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!