V = 25,364.4 cm^3 Is volumer = 2.7g/cm^3 Is density
To calculate mass you use formula:m= V*rTo avoid remembering this formula you can see the type of unit on each given variable. We can see that we have g/cm^3 and cm^3. If we multiply them, we negate cm^3 and cm^3 and we are left with g which is unit for mass.
the answer is :
m = 68,486,6 g
Answer:
a)

b)

Explanation:
L = inductance of the Inductor = 3.14 mH = 0.00314 H
C = capacitance of the capacitor = 5.08 x 10⁻⁶ F
a)
f = frequency = 55.7 Hz
Impedance is given as



b)
f = frequency = 11000 Hz
Impedance is given as



Answer:
130.165636364°C
Explanation:
P = Pressure
V = Volume
n = Number of moles
R = Gas constant = 0.082 L atm/mol K
From ideal gas law we have


The initial temperature is 
Answer:
forces , motions , friction
Explanation: