Well, first of all, a car moving around a circular curve is not moving
with uniform velocity. The direction of motion is part of velocity, and
the direction is constantly changing on a curve.
The centripetal force that keeps an object moving in a circle is
Force = (mass of the object) · (speed)² / (radius of the circle)
F = m s² / r
We want to know the radius, to rearrange the formula to give us
the radius as a function of everything else.
F = m s² / r
Multiply each side by 'r': F· r = m · s²
Divide each side by 'F': r = m · s² / F
We know all the numbers on the right side,
so we can pluggum in:
r = m · s² / F
r = (1200 kg) · (20 m/s)² / (6000 N) .
I'm pretty sure you can finish it up from here.
Answer:
FAE= 0.014 N
Explanation:
The KE of block is decreased because of the slowing action of the friction force .
Change in KE of block = work done on block by friction ƒ
⠀ ➪ ½mu²ƒ - ½mu²i = Fƒs cos θ
Because the friction force on the block is opposite in direction to the displacement , cos θ = -1
➢ Using Uƒ = 0 , Vƒ = 0.20 m/s , and s = 0.70 m
✒ We find ,
➪½mu²ƒ - ½mu²i = Fƒs cos θ
➪0-½ (0.50 kg) (0.20 m/s)² = (Fƒ) (0.70 m) (-1)
➪ Fƒ = 0.014 N
Hope this helped, can i pls have brainliest
Answer:
The horse father from the center has a greater tangential speed. Although both horses complete one circle in the same time period, the one farther from the center covers a greater distance during that same period.
Explanation:
Answer:
Explanation:
The net force on the potatoes is given by:
F= 52 - mgSintheta
F= 52- (2×9.8× Sin70°)
F = 52 -18.4
F= 33.58N
Using Newton's 2nd law
F = ma
a=F/m = 33.58/ 2 = 16.79m/s^2
Using the equation of motion:
V^2= u^2 + 2as
V^2 = 0 + 2× 16.79 x2
V^2 = 67.16
V=sqrt(68.16)
V= 8.195m/s This is the exit velocity of the potatoes
Kinetic energy, K.E = 1/2mv^2
KE= 1/2 × 2 × 8.195^2
KE = 67.16J