Answer:
a) Since the height of the baseball at 99 m was 8.93 m and the fence at that distance is 3m tall, the hit was a home run.
b) The total distance traveled by the baseball was 108.7 m.
Explanation:
a) To know if the hit was a home run we need to calculate the height of the ball at 99 m:

Where:
: is the final height =?
: is the initial height = 1 m
: is the initial vertical velocity = v₀sin(45)
v₀: is the initial velocity = 32.5 m/s
g: is the gravity = 9.81 m/s²
t: is the time
First, we need to find the time by using the following equation:

Now, the height is:
Since the height of the baseball at 99 m was 8.93 m and the fence at that distance is 3m tall, the hit was a home run.
b) To find the distance traveled by the baseball first we need to find the time of flight:



By solving the above quadratic equation we have:
t = 4.73 s
Finally, with that time we can find the distance traveled by the baseball:

Hence, the total distance traveled by the baseball was 108.7 m.
I hope it helps you!
Answer:
Specific heat of water is 4.186 J/g/C. The heat required to raise the temperature by
is
Here is mass of water being heated, specific heat of water and change in temperature.
Here .
Heat energy required is
Explanation:
Answer:
a)= 98kJ
b)=108kJ
c) = 10kJ
Explanation:
a. The work that is done by gravity on the elevator is:
Work = force * distance
= mass * gravity * distance
= 1000 * 9.81 * 10
= 98,000 J
= 98kJ
b)The net force equation in the cable
T - mg = ma
T = m(g+a)
T = 1000(9.8 + 10)
T = 10800N
The work done by the cable is
W = T × d
= 10800N × 10
= 108000
=108kJ
c) PE at 10m = 1000 * 9.81 * 10 = 98,100 J
Work done by cable = PE +KE
108,100 J = KE + 98,100 J
KE = 10,000 J
= 10kJ
=
<span>Light can travel in a vacuum, and ... strange as it may seem ...
its speed is always the same, even if the light source is moving. </span>
Answer:

Explanation:
The electrostatic potential energy is given by the following formula

Now, we will apply this formula to both cases:

So, the change in the potential energy is
