Bohr's equation for the change in energy is

where
h = Planck's constant
c == the velocity of light
λ = wavelength.
The velocity is related to wavelength and frequency, f, by
c = fλ
Let us examine the given answers on the basis of the given equations.
a. As λ increases, f decreases and ΔE decreases.
TRUE
b. As λ increases, f increases and ΔE increases.
FALSE
c. As λ increases, f increases and ΔE decreases.
FALSE
Answer:
As the wavelength increases, the frequency decreases and energy decreases.
Sound level at distance of 15 m is given as 20 dB
so intensity at this distance is given as



now if we move closer to some some distance the sound level is now 50 dB
now the intensity is given as



now we know that



so now the distance from friend must be 47 cm
-- The acceleration of gravity is 9.8 m/s².
So if there's no air resistance, the speed of a falling object
always increases by 9.8 m/s for every second it falls.
Speed = (original speed) + (gravity x falling time)
-- If it has no vertical speed when it started, then at the end
of 3 seconds, its speed is
= (0) + (9.8 m/s² x 3 sec)
Velocity = 29.4 m/s downward .
radio waves bc they have the longest wave lenthgs in a magnetic spectrum
Answer:
374.39 J/K
Explanation:
Entropy: This can be defined as the degree of disorder or randomness of a substance.
The S.I unit of entropy is J/K
ΔS = ΔH/T ..................................... Equation 1
Where ΔS = entropy change, ΔH = Heat change, T = temperature.
ΔH = cm................................... Equation 2
Where,
c = specific latent heat of fusion of water = 333000 J/kg, m = mass of ice = 0.3071 kg.
Substitute into equation 2
ΔH = 333000×0.3071
ΔH = 102264.3 J.
Also, T = 273.15 K
Substitute into equation 1
ΔS = 102264.3/273.15
ΔS = 374.39 J/K
Thus, The change in entropy = 374.39 J/K