Answer:
<h2>0.05 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 0.025 × 2
We have the final answer as
<h3>0.05 N</h3>
Hope this helps you
Both distance between and mass of the 2 objects.
Sharing of 4 electrons between two atoms results in two double bonds. This can be see in the case of oxygen molecule (O2)
Atomic number of O = 8
Electron configuration of O = 1s²2s²2p⁴
Valence electron configuration: 2s²2p⁴
When 2 O atoms combine they share 4 electrons to form 2 double bonds. In addition, there are two lone pairs on each O atom.
Structural formula: O=O
Is the production of electricity by magnetic field.
There are two types of generator which is <u>D</u><u>.</u><u>C</u><u> </u>generator . And A.C <em>g</em><em>e</em><em>n</em><em>e</em><em>r</em><em>a</em><em>t</em><em>o</em><em>r</em>
A.C gen consist of rectangular coil,brushes and permanent magnet
According to the external force mechanical energy used to rotate coil, due to magnetic flux produced by permanent magnet create induced current, this is to according to flemmings right hand rule of electromagnetic induction the rotating coil will produce current
I hope that will help.
Answer: Rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Explanation: Terminal velocity is defined as the final velocity attained by an object falling under the gravity. At this moment weight is balanced by the air resistance or drag force and body falls with zero acceleration i.e. with a constant velocity.
Case 1: Terminal velocity of a piece of tissue paper.
The weight of tissue paper is very less and it experiences an air resistance while falling downward under the effect of gravity.
Downward gravitational force, F = mg
Upward air resistance or friction or drag force will be 
So, paper will attain terminal velocity when mg =
Case 2: Rock is very heavy and require larger air resistance to balance the weight of rock relative to the tissue paper case.
Downward force on rock, F = Mg
Drag force =
Rock will attain terminal velocity when Mg =
Mg > mg
so,
>
And rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.