Start with the equation,
V = 2s^3
Now substitute s with 3.5 units and evaluate the expression.
V = 2 * (3.5 units)^3
V = 2 * 42.875 units^3
V = 85.75 units^3
Answer: The volume is 85.75 cubic units
if the diameter of a circle is 15, its radius is half that or 7.5.
![\bf \textit{area of a circle}\\\\ A=\pi r^2~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=7.5 \end{cases} A=\pi (7.5)^2\implies A=56.25\pi \implies \stackrel{\pi =3.14}{A=176.625}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20circle%7D%5C%5C%5C%5C%20A%3D%5Cpi%20r%5E2~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D7.5%20%5Cend%7Bcases%7D%20A%3D%5Cpi%20%287.5%29%5E2%5Cimplies%20A%3D56.25%5Cpi%20%5Cimplies%20%5Cstackrel%7B%5Cpi%20%3D3.14%7D%7BA%3D176.625%7D%20)
Step-by-step explanation:
<u>Given functions:</u>
<u>Find (f*g)(6):</u>
- (f*g)(6) = f(6)*g(6) = 6(6 - 1)*3(6) = 30*18 = 540
<u>In case it is a composite function (f · g)(6) the answer is different:</u>
- (f · g)(6) = f(g(6)) = f(3*6) = f(18) = 18*(18 - 1) = 306
Times the second equation by 2 to get y=9x-33 and then subtract
5.1g = 35.7
5.1g/5.1 = 35.7/5.1
g = 35.7/5/1
g = 7
hope this helps